Transrectal ovarian ultrasonography was performed daily in eight ewes during one interovulatory interval, using a 7.5 MHz, rigid, human prostate transducer, and a realtime B-mode scanner to record the numbers, diameters and position of all follicles > or = 2 mm in diameter and the corpora lutea in both ovaries. Blood samples were taken once a day and were analysed for concentrations of FSH, progesterone and oestradiol. During the interovulatory interval of 17.2 +/- 0.4 days, antral follicles (follicles > 2 mm in diameter) emerged on all days except for days 1, 5, 15, 16 and 17. A significant increase in the numbers of follicles emerging was seen on days 2 and 11. The ovulatory follicle (6.9 +/- 0.1 mm diameter) was retrospectively traced to emergence on day 11.1 +/- 0.3 and grew over a period of 4.1 +/- 0.1 days at a growth rate of 1.2 +/- 0.04 mm day-1. The largest nonovulatory follicles of the same period grew at the same rate as ovulatory follicles and regressed over a period of 2.6 +/- 0.2 days at a rate of 1.2 +/- 0.07 mm day-1. The mean diameter of the largest follicles seen on each day of the oestrous cycle was lowest on the day of ovulation (2.9 +/- 0.2 mm), increased from day 3 to day 5 (4.1 +/- 0.4 mm) and again from day 11 to the day before ovulation (6.9 +/- 0.1 mm; P< 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Mammalian spermatozoa deliver various classes of RNAs to the oocyte during fertilization, and many of them may regulate fertility. The objective of the present study was to determine the composition and abundance of spermatozoal transcripts in fresh bull semen. The entire transcriptome of the spermatozoa from bulls (n = 3) was sequenced using two different platforms (Ion Proton and Illumina) to identify the maximum number of genes present in the spermatozoa. The bovine spermatozoa contained transcripts for 13,833 genes (transcripts per million, TPM > 10). Both intact and fragmented transcripts were found. These spermatozoal transcripts were associated with various stages of spermatogenesis, spermatozoal function, fertilization, and embryo development. The presence of intact transcripts of pregnancy-associated glycoproteins (PAGs) in the spermatozoa suggest a possible influence of sperm transcripts beyond early embryonic development. The specific regions (exon, intron, and exon-intron) of the particular spermatozoal transcripts might help regulate fertilization. This study demonstrates that the use of two different RNA-seq platforms provides a comprehensive profile of bovine spermatozoal RNA. Spermatozoal RNA profiling may be useful as a non-invasive method to delineate possible causes of male infertility and to predict fertility in a manner that is more effective than the conventional methods.
The present study examines the use of buffalo preantral follicles as a source of oocytes for in vitro embryo production. Preantral follicles were isolated from abattoir-derived buffalo ovaries and were grown for 100 days in five different culture systems: (1) minimum essential medium (MEM); (2) coconut water; (3) MEM + ovarian mesenchymal cell (OMC) co-culture; (4) MEM + granulosa cell (GC) co-culture; or (5) MEM + cumulus cell (CC) co-culture. Low growth rates for the preantral follicles were observed when follicles were cultured in MEM or coconut water medium. Moderate growth rates were seen for OMC and GC co-cultures, and high rates of growth were observed when follicles were grown in CC co-culture. The survival of preantral follicles was low in the MEM culture (<25%), but was over 75% in the other culture systems. Oocytes were not recovered from the MEM group, while an oocyte recovery rate of 80-100% was observed when the follicles were cultured with coconut water/somatic cells. Transferable embryos could be produced only with the oocytes obtained from preantral follicles grown in the OMC and CC co-culture systems. This study demonstrates, for the first time, that it is possible to produce buffalo embryos by in vitro fertilization of oocytes derived from in vitro grown preantral follicles.
This study was carried out to investigate the effect of supplementing culture medium with different concentrations of taurine and melatonin, on buffalo oocyte in vitro meiotic maturation and embryo development. In experiment 1, oocytes were matured in vitro and the cleaved embryos were cultured in the same following seven culture medium; (i) control (TCM 199 + 10% SS); (ii) control + 0.5 mM taurine; (iii) control + 1 mM taurine; (iv) control + 3 mM taurine; (v) control + 5 microM melatonin; (vi) control + 10 microM melatonin and (vii) control + 50 microM melatonin. In experiment 2, based on the results of experiment 1, to examine the synergistic effect of antioxidants, the oocytes were matured in culture medium (TCM199 + 10% SS), supplemented with both taurine at 1 mM and melatonin at 10 microM concentration and the cleaved embryos were cultured in the same medium. Supplementation of taurine at 1 mM concentration in the culture medium resulted in a higher (p < 0.05) transferable embryo (TE) yield when compared with control (20.6% vs 14.1%). Supplementation of melatonin at 10 and 50 microM concentration in the culture medium resulted in a higher (p < 0.05) meiotic maturation rate (90.3% and 88.8% respectively) and TE yield (28.4% and 27.2% respectively), than the other treatments. In experiment 2, the TE yield did not improve by supplementing the culture medium with both taurine and melatonin, when compared with melatonin alone. In conclusion, the results of this study demonstrated that, enriching the culture medium with taurine and melatonin, improves in vitro embryo production efficiency in buffaloes. In particular, a high TE yield was obtained by enriching the culture medium with 10 microM melatonin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.