The innervation of the frog subcommissural organ was studied by light-microscopic and ultrastructural immunocytochemistry using antisera against serotonin, noradrenaline, dopamine, γ-aminobutyric acid (GABA), glutamic acid decarboxylase, different GABA receptor subunits and bovine Reissner's fibre material (AFRU). In the proximity of the organ, serotonin-and noradrenalinecontaining fibres were rare whereas dopamine-immunoreactive fibres were more numerous. Many GABA-and glutamic acid decarboxylase-containing nerve fibres were found at the basal portion of the ependymal cells of the subcommissural organ. Under the electron microscope, these GABA-immunolabelled nerve endings appeared to establish axoglandular synapses with secretory ependymal cells of the subcommissural organ. In addition, the secretory ependymal cells expressed high amounts of the β 2 -subunit of the GABA A receptor. Since GABA-immunoreactive neurons were present in the frog pineal organ proper and apparently contributed axons to the pineal tract, we suggest that at least part of the GABAergic fibres innervating the frog subcommissural organ could originate from the pineal organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.