We present the first asteroseismic results for δ Scuti and γ Doradus stars observed in Sectors 1 and 2 of the TESS mission. We utilize the 2-min cadence TESS data for a sample of 117 stars to classify their behaviour regarding variability and place them in the Hertzsprung–Russell diagram using Gaia DR2 data. Included within our sample are the eponymous members of two pulsator classes, γ Doradus and SX Phoenicis. Our sample of pulsating intermediate-mass stars observed by TESS also allows us to confront theoretical models of pulsation driving in the classical instability strip for the first time and show that mixing processes in the outer envelope play an important role. We derive an empirical estimate of 74 per cent for the relative amplitude suppression factor as a result of the redder TESS passband compared to the Kepler mission using a pulsating eclipsing binary system. Furthermore, our sample contains many high-frequency pulsators, allowing us to probe the frequency variability of hot young δ Scuti stars, which were lacking in the Kepler mission data set, and identify promising targets for future asteroseismic modelling. The TESS data also allow us to refine the stellar parameters of SX Phoenicis, which is believed to be a blue straggler.
Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims. We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the T eff − log g diagram, we fit optical spectra (SDSS) with synthetic nonmagnetic spectra derived from model atmospheres. Methods. To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the T eff − log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results. We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be T eff = 7972 ± 200 K, log g = 4.25 ± 0.5 and T eff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ∼0.17 M ) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013Maxted et al. ( , 2014, indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded.
The Galactic B[e] supergiant MWC 137 is surrounded by a large-scale optical nebula. To shed light on the physical conditions and kinematics of the nebula, we analyze the optical forbidden emission lines [N ii] λλ 6548,6583 and [S ii] λλ 6716,6731 in long-slit spectra taken with ALFOSC at the Nordic Optical Telescope. The radial velocities display a complex behavior but, in general, the northern nebular features are predominantly approaching while the southern ones are mostly receding. The electron density shows strong variations across the nebula with values spreading from about zero to ∼ 800 cm −3 . Higher densities are found closer to MWC 137 and in regions of intense emission, whereas in regions with high radial velocities the density decreases significantly. We also observe the entire nebula in the two [S ii] lines with the scanning Fabry-Perot interferometer attached to the 6-m telescope of the Special Astrophysical Observatory. These data reveal a new bow-shaped feature at PA = 225 − 245 • and a distance 80 from MWC 137. A new Hα image has been taken with the Danish 1.54-m telescope on La Silla. No expansion or changes in the nebular morphology appear within 18.1 years. We derive a mass of 37 +9 −5 M and an age of 4.7 ± 0.8 Myr for MWC 137. Furthermore, we detect a period of 1.93 d in the time series photometry collected with the TESS satellite, which could suggest stellar pulsations. Other, low-frequency variability is seen as well. Whether these signals are caused by internal gravity waves in the early-type star or by variability in the wind and circumstellar matter currently cannot be distinguished.
Context. In the time of large space surveys that provide tremendous amounts of precise data, it is highly desirable to have a commonly accepted methodology and system for the classification of variable stars. This is especially important for A-F stars, which can show intrinsic brightness variations due to both rotation and pulsations. Aims. The goal of our study is to provide a reliable classification of the variability of A-F stars brighter than 11 mag located in the northern TESS continuous viewing zone. We also aim to provide a thorough discussion about issues in the classification related to data characteristics and the issues arising from the similar light-curve shape generated by different physical mechanisms. Methods. We used TESS long-and short-cadence photometric data and corresponding Fourier transform to classify the variability type of the stars. We also used spectroscopic observations to determine the projected rotational velocity of a few stars. Results. We present a clear and concise classification system that is demonstrated on many examples. We find clear signs of variability in 3025 of 5923 studied stars (51 %). For 1813 of these 3025 stars, we provide a classification; the rest cannot be unambiguously classified. Of the classified stars, 64.5 % are pulsating stars of g-mode γ Doradus (GDOR) and p-mode δ Scuti types and their hybrids. We realised that the long-and short-cadence pre-search data conditioning simple aperture photometry data can differ significantly not only in amplitude but also in the content of instrumental and data-reduction artefacts, making the long-cadence data less reliable. We identified a new group of stars that show stable light curves and characteristic frequency spectrum patterns (8.5 % of the classified stars). According to the position in the Hertzsprung-Russell diagram, these stars are likely GDOR stars but are on average about 200 K cooler than GDORs and have smaller amplitudes and longer periods. With the help of spectroscopic measurements of v sin i, we show that the variability of stars with unresolved groups of peaks located close to the positions of the harmonics in their frequency spectra (16 % of the classified stars) can be caused by rotation rather than by pulsations. We show that without spectroscopic observations it can be impossible to unambiguously distinguish between ellipsoidal variability and rotational variability. We also applied our methodology to three previous studies and find significant discrepancies in the classification. Conclusions. We demonstrate how difficult the classification of variable A-F stars can be when using only photometric data, how the residual artefacts can produce false positives, and that some types cannot actually be distinguished without spectroscopic observations. Our analysis provides collections that can be used as training samples for automatic classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.