Two-color two-photon femtosecond ionization experiments have been performed on NaI. The wave packet evolution of the A excited state has been followed by detecting photoions and photoelectrons. The results indicate that the Na+ ions are formed when the wave packet is located at the outer turning point of the excited state. Surprisingly, the NaI+ ions are also observed to be in phase with the Na+ signal. Photoelectron spectra show that high kinetic energy electrons are produced when ionizing around the outer turning point, in agreement with the NaI+ formation. The absence of signal corresponding to ionization from the covalent part of the excited state potential can only be understood if the absolute ionization cross section is much smaller in the covalent region of the A state (where the molecule can be considered as a van der Waals complex) than in the ionic Na+···I- part of the A state potential (where the interatomic distance is such that the ionization process may be considered as a photodetachment of the electron from I- anion). Simulations taking into account that ionization occurs only when the wave packet is in the ionic region of the A state are in good agreement with experimental data.
Articles you may be interested inEffect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods J. Chem. Phys. 140, 084301 (2014); 10.1063/1.4865815 On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: Excited-state dynamics in 1-nitronaphthalene J. Chem. Phys. 131, 224518 (2009); 10.1063/1.3272536Mass-analyzed threshold ionization study of vinyl bromide cation in the first excited electronic state using vacuum-ultraviolet radiation generated by four-wave mixing in HgThe time evolution of the first excited states of ethylene, and alkyl substituted ethylenes, isomers with formula C 6 H 12 , has been studied by the femtosecond pump probe method, using mass spectrometric detection, in the region of 6 eV ͑200 nm͒. Two cyclic alkenes of the formula C 6 H 10 have also been studied. These systems exhibit a multi-exponential decay characterized by a very short time decay, ranging from 20 fs͑ethylene͒ to 100 fs ͑trans hex-2-ene͒ and a longer decay, in the picosecond range follows for most of the alkyl isomers. The short time evolution is characteristic of wave packet motion on a steep potential surface. The initial motion has been identified as the torsion about the CC double bond resulting from excitation of the valence state. The evolution of the valence excited state of excited state ethylene ͓first studied by the group of Radloff, Chem. Phys. Lett. 288, 2044 ͑1997͔͒ has been taken as a reference. The extremely rapid evolution, 20 fs, without any longer temporal component is explained by the disappearance of the wave packet from the Franck-Condon region into a conical intersection leading to the ground state surface by reference to the theoretical calculations of Ohmine ͓J. Chem. Phys. 83, 2348 ͑1985͔͒. This motion is essentially multidimensional to reach the funnel to the ground state; it combines the torsion about the CC double bond with a pyramidalization about one of the carbon atoms and/or H atom migration from one carbon to the other. Cyclic alkenes exhibit a similar behavior as ethylene with a single ultrashort decay that arises from this same mechanism. Also in the other substituted alkenes the short decay has been assigned to the wave packet motion away from the Franck-Condon region under the influence of the torsion about the double bond. The final longer decay could also be captured in the case of tetramethylethylene by a 800 nm probe as the internal conversion to the ground state via a funnel more difficult to reach. These measurements emphasize the role of conical intersections which could not be brought into evidence without time dependent methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.