Lactic acid bacteria (LAB) and the glutathione (GSH) pathway are protective against aflatoxin, but information on the effect of LAB on aflatoxin metabolism and GSH activity in farm animals is scarce. This study aimed to investigate the effects of LAB and aflatoxin B (AFB) on growth performance, aflatoxin metabolism, and GSH pathway activity using 480 male Arbor Acres broiler chickens from d 1 to 35 of age. Diets were arranged in a 2 × 2 factorial design, including AFB at 0 or 40 µg/kg of feed and LAB at 0 or 3 × 10 cfu/kg of feed, and the LAB was a mixture of equal amounts of , , and . The results showed that there were highly significant ( < 0.01) effects of AFB toxicity, LAB protection, and their interaction on ADFI, ADG, and G:F of broilers during d 1 to 35. Compared with the AFB diet, the LAB diet reduced ( < 0.05) the residues of AFB in the liver, kidney, serum, ileal digesta, and excreta on d 14 by 121.5, 80.6, 43.7, 47.0, and 26.5%, respectively, and on d 35 by 40.6, 60.2, 131.7, 37.9, and 32.9%, respectively, whereas the LAB diet increased ( < 0.05) the contents of aflatoxin M, a metabolite of AFB, in the liver, kidney, serum, and ileal digesta on d 14 by 98.2, 154.2, 168.6, 19.1, and 34.1%, respectively, and in the kidney and serum on d 35 by 32.6 and 142.2%, respectively. For the activity of the GSH pathway in the liver and duodenal mucosa, there were significant ( ≤ 0.01) effects of LAB and AFB on reduced GSH, glutathione S-transferases (GST), and glutathione reductase (GR) on d 14 and 35; compared with the control diet, the LAB diet increased ( < 0.05) GSH, GST, and GR by a range of 11.6 to 86.1%, and compared with the AFB diet, the LAB diet increased ( < 0.05) GSH, GST, and GR by a range of 24.1 to 146.9%. In the liver, there were interactions ( < 0.05) on GSH and GST on d 14 and on GSH on d 35; in the mucosa, interactions were significant ( ≤ 0.01) on GSH and GR on d 14 and on GST on d 35. It can be concluded that LAB is effective in the detoxification of AFB by modulating toxin metabolism and activating the GSH pathway in animals.
A new, fast and low cost method to produce Cu-doped ZnO nanosheets is reported for the first time in this paper. Zinc foil specimens were immersed into CuSO 4 aqueous solutions with various concentrations for 3 seconds and then dried at ambient condition. The immersed specimens were characterized with a scanning electron microscope, an X-ray diffractometer and a transmission electron microscope. The results show that Cu-doped ZnO nanosheets with a multilayer structure on a cupper layer are formed. Cu-doped ZnO nanosheets show hexagonal crystalline structure and comprises polycrystalline grains with diameters of 5∼10 nm. A physical modal is suggested to explain the prepared Cu-doped ZnO nanosheet structure, based on the chemical reactions and a metallurgical cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.