Experimental objectives were to determine the effects of supplemental saturated fatty acids on production, body temperature indices, and some aspects of metabolism in mid-lactation dairy cows experiencing heat stress. Forty-eight heat-stressed Holstein cows were allocated into 3 groups (n=16/group) according to a completely randomized block design. Three treatment diets consisted of supplemental saturated fatty acids (SFA) at 0 (SFA0), 1.5 (SFA1.5), or 3.0% (SFA3) of dry matter (DM) for 10 wk. Diets were isonitrogenous (crude protein=16.8%) and contained 1.42, 1.46, and 1.49 Mcal of net energy for lactation/kg of DM for the SFA0, SFA1.5 and SFA3 diets, respectively. The average temperature-humidity index at 0700, 1400 and 2200 h was 72.2, 84.3, and 76.6, respectively. Rectal temperatures at 1400 h were decreased with fat supplementation. Treatment did not affect dry matter intake (20.1+/-0.02 kg/d), body condition score (2.72+/-0.04), body weight (627+/-16.1 kg), or calculated energy balance (1.32+/-0.83 Mcal/d). Saturated fatty acid supplementation increased milk yield, milk fat content, and total milk solids. Increasing fat supplementation decreased plasma nonesterified fatty acids (8%) but had no effect on other energetic metabolites or hormones. In summary, supplemental SFA improved milk yield and milk fat content and yield and reduced peak rectal temperatures in mid-lactation heat-stressed dairy cows. This demonstrates the remarkable amount of metabolic heat that is "saved" by energetically replacing fermentable carbohydrates with supplemental SFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.