This work indicates the potential for markerless tumor tracking utilizing DE fluoroscopy. With DE imaging, the algorithm showed improved detectability vs SE fluoroscopy and was able to accurately track the tumor in nearly all cases.
The purpose of this study was to survey current departmental policies on treatment couch overrides and the values of table tolerances used clinically. A 25‐question electronic survey on couch overrides and tolerances was sent to full members of the American Association of Physicists in Medicine (AAPM). The first part of the survey asked participants if table overrides were allowed at their institution, who was allowed to perform these overrides, and if imaging was required with overrides. The second part of the survey asked individuals to provide table tolerance data for the following treatment sites: brain/head and neck (H&N), lung, breast, abdomen/pelvis and prostate. Each site was further divided into IMRT/VMAT and 3D conformal techniques. Spaces for free‐text were provided, allowing respondents to enter any table tolerance data they were unable to specify under the treatment sites listed. A total of 361 individuals responded, of which approximately half participated in the couch tolerances portion of the survey. Overall, 86% of respondents’ institutions allow couch tolerance overrides at treatment. Therapists were the most common staff members permitted to perform overrides, followed by physicists, dosimetrists, and physicians, respectively. Of the institutions allowing overrides, 34% reported overriding daily. More than half of the centers document the override and/or require a setup image to radiographically verify the treatment site. With respect to table tolerances, SRS/SBRT table tolerances were the tightest, while clinical setup table tolerances were the largest. There were minimal statistically significant differences between IMRT/VMAT and 3D conformal table tolerances. Our results demonstrated that table overrides are relatively common in radiotherapy despite being a potential safety concern. Institutions should review their override policy and table tolerance values in light of the practices of other institutions. Careful attention to these matters is crucial in ensuring the safe and accurate delivery of radiotherapy.PACS number(s): 87.55.N‐, 87.55.Qr, 87.55.T‐
Purpose:
To compare markerless template‐based tracking of lung tumors using dual energy (DE) cone‐beam computed tomography (CBCT) projections versus single energy (SE) CBCT projections.
Methods:
A RANDO chest phantom with a simulated tumor in the upper right lung was used to investigate the effectiveness of tumor tracking using DE and SE CBCT projections. Planar kV projections from CBCT acquisitions were captured at 60 kVp (4 mAs) and 120 kVp (1 mAs) using the Varian TrueBeam and non‐commercial iTools Capture software. Projections were taken at approximately every 0.53° while the gantry rotated. Due to limitations of the phantom, angles for which the shoulders blocked the tumor were excluded from tracking analysis. DE images were constructed using a weighted logarithmic subtraction that removed bony anatomy while preserving soft tissue structures. The tumors were tracked separately on DE and SE (120 kVp) images using a template‐based tracking algorithm. The tracking results were compared to ground truth coordinates designated by a physician. Matches with a distance of greater than 3 mm from ground truth were designated as failing to track.
Results:
363 frames were analyzed. The algorithm successfully tracked the tumor on 89.8% (326/363) of DE frames compared to 54.3% (197/363) of SE frames (p<0.0001). Average distance between tracking and ground truth coordinates was 1.27 +/− 0.67 mm for DE versus 1.83+/−0.74 mm for SE (p<0.0001).
Conclusion:
This study demonstrates the effectiveness of markerless template‐based tracking using DE CBCT. DE imaging resulted in better detectability with more accurate localization on average versus SE.
Supported by a grant from Varian Medical Systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.