Abstract-Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsity of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network.
We propose a light-weight event-driven protocol for wireless camera networks to allow for formation and propagation of clusters of cameras for the purpose of collaborative processing during object tracking. Cluster formation is triggered by the detection of objects with specific features. Our protocol allows for simultaneous formation and propagation of multiple clusters. Cameras being directional devices, more than one cluster may track a single object since groups of cameras outside each others communication range may see the same object. Entry into a cluster and cluster membership maintenance require a sensor node to confirm the presence of features of the object being tracked. Each cluster elects its own leader among the cameras that observe the same target. When a cluster leader loses track of an object, it assigns the leadership role to another cluster member. To avoid high communication overhead among cluster members, singlehop clusters are formed, i.e., every member of a cluster is within the communication range of the cluster head. We have implemented a simple version of this protocol on a test-bed and provide an experimental evaluation.
Abstract-We present a system for constructing 3D models of real-world objects with optically challenging surfaces. The system utilizes a new range imaging concept called multipeak range imaging, which stores multiple candidates of range measurements for each point on the object surface. The multiple measurements include the erroneous range data caused by various surface properties that are not ideal for structured-light range sensing. False measurements generated by spurious reflections are eliminated by applying a series of constraint tests. The constraint tests based on local surface and local sensor visibility are applied first to individual range images. The constraint tests based on global consistency of coordinates and visibility are then applied to all range images acquired from different viewpoints. We show the effectiveness of our method by constructing 3D models of five different optically challenging objects. To evaluate the performance of the constraint tests and to examine the effects of the parameters used in the constraint tests, we acquired the ground-truth data by painting those objects to suppress the surface-related properties that cause difficulties in range sensing. Experimental results indicate that our method significantly improves upon the traditional methods for constructing reliable 3D models of optically challenging objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.