A k-block in a graph G is a maximal set of at least k vertices no two of which can be separated in G by removing less than k vertices. It is separable if there exists a tree-decomposition of adhesion less than k of G in which this k-block appears as a part.Carmesin, Diestel, Hamann, Hundertmark and Stein proved that every finite graph has a canonical tree-decomposition of adhesion less than k that distinguishes all its k-blocks and tangles of order k. We construct such tree-decompositions with the additional property that every separable k-block is equal to the unique part in which it is contained. This proves a conjecture of Diestel.
Tree sets are abstract structures that can be used to model various tree-shaped objects in combinatorics. Finite tree sets can be represented by finite graph-theoretical trees. We extend this representation theory to infinite tree sets. First we characterise those tree sets that can be represented by tree sets arising from infinite trees; these are precisely those tree sets without a chain of order type ω + 1. Then we introduce and study a topological generalisation of infinite trees which can have limit edges, and show that every infinite tree set can be represented by the tree set admitted by a suitable such tree-like space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.