For animals to navigate an uncertain world, their brains need to estimate uncertainty at the timescales of sensations and actions. Sampling-based algorithms afford a theoretically-grounded framework for probabilistic inference in neural circuits, but it remains unknown how one can implement fast sampling algorithms in biologically-plausible spiking networks. Here, we propose to leverage the population geometry, controlled by the neural code and the neural dynamics, to implement fast samplers in spiking neural networks. We first show that that two classes of spiking samplers—efficient balanced spiking networks that simulate Langevin sampling, and networks with probabilistic spike rules that implement Metropolis-Hastings sampling—can be unified within a common framework. We then show that careful choice of population geometry enables rapid inference of parameters drawn from strongly-correlated high-dimensional distributions in both networks. Our results suggest design principles for algorithms for sampling-based probabilistic inference in spiking neural networks, yielding potential inspiration for neuromorphic computing and testable predictions for neurobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.