Mammals evolved an endogenous timing system to coordinate their physiology and behaviour to the 24h period of the solar day. While it is well accepted that circadian rhythms are generated by intracellular transcriptional feedback loops, it is still debated which network motifs are necessary and sufficient for generating self-sustained oscillations. Here, we systematically explore a data-based circadian oscillator model with multiple negative and positive feedback loops and identify a series of three subsequent inhibitions known as “repressilator” as a core element of the mammalian circadian oscillator. The central role of the repressilator motif is consistent with time-resolved ChIP-seq experiments of circadian clock transcription factors and loss of rhythmicity in core clock gene knockouts.
The analysis of tissue-specific data-based models of the gene regulatory network of the mammalian circadian clock reveals organ-specific synergies of feedback loops.
The circadian clock is a powerful endogenous timing system, which allows organisms to fine-tune their physiology and behaviour to the geophysical time. The interplay of a distinct set of core-clock genes and proteins generates oscillations in expression of output target genes which temporally regulate numerous molecular and cellular processes. The study of the circadian timing at the organismal as well as at the cellular level outlines the field of chronobiology, which has been highly interdisciplinary ever since its origins. The development of high-throughput approaches enables the study of the clock at a systems level. In addition to experimental approaches, computational clock models exist which allow the analysis of rhythmic properties of the clock network. Such mathematical models aid mechanistic understanding and can be used to predict outcomes of distinct perturbations in clock components, thereby generating new hypotheses regarding the putative function of particular clock genes. Perturbations in the circadian timing system are linked to numerous molecular dysfunctions and may result in severe pathologies including cancer. A comprehensive knowledge regarding the mechanistic of the circadian system is crucial to develop new procedures to investigate pathologies associated with a deregulated clock.In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.
A cell's function is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here, we combine single-cell and spatial transcriptomic data to discover cellular niches within eight regions of the human heart. We map cells to micro-anatomic locations and integrate knowledge-based and unsupervised structural annotations. For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors, and cell interactions using a custom CellPhoneDB.org module. We show that the sinoatrial node is compartmentalised, with a core of pacemaker cells, fibroblasts and glial cells supporting paracrine glutamatergic signalling. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions, providing unexpected mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches which may contribute to infection defence. We define a ventricular myocardial-stress niche enriched for activated fibroblasts and stressed cardiomyocytes, cell states that are expanded in cardiomyopathies. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be deployed to other tissues and organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.