In this paper, the trajectory tracking control and the field programmable gate array (FPGA) implementation between a recurrent neural network with time delay and a chaotic system are presented. The tracking error is globally asymptotically stabilized by means of a control law generated from the Lyapunov–Krasovskii and Lur’e theory. The applicability of the approach is illustrated by considering two different chaotic systems: Liu chaotic system and Genesio–Tesi chaotic system. The numerical results have shown the effectiveness of obtained theoretical results. Finally, the theoretical results are implemented on an FPGA, confirming the feasibility of the synchronization scheme and showing that it is hardware realizable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.