To understand the controllability of complex networks is a forefront problem relevant to different fields of science and engineering. Despite recent advances in network controllability theories, an outstanding issue is to understand the effect of network topology and nodal interactions on the controllability at the most fundamental level. Here we develop a universal framework based on local information only to unearth the most fundamental building blocks that determine the controllability. In particular, we introduce a network dissection process to fully unveil the origin of the role of individual nodes and links in control, giving rise to a criterion for the much needed strong structural controllability. We theoretically uncover various phase-transition phenomena associated with the role of nodes and links and strong structural controllability. Applying our theory to a large number of empirical networks demonstrates that technological networks are more strongly structurally controllable (SSC) than many social and biological networks, and real world networks are generally much more SSC than their random counterparts with intrinsic resilience and adaptability as a result of human design and natural evolution. * Electronic address: wenxuwang@bnu.edu.cn
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.