Mutations in the WNK1 gene cause Gordon's syndrome, a rare Mendelian form of hypertension. We assessed whether common WNK1 variants might also contribute to essential hypertension (EH), a multifactorial disorder affecting > 25% of the adult population worldwide. A panel of 19 single nucleotide polymorphisms (SNPs) spanning the gene was selected from public databases and was genotyped in 100 white European families to determine the pattern of linkage disequilibrium, haplotype structure and tagging SNPs for the WNK1 locus. Eight tagging SNPs were identified with 90% power to predict common WNK1 haplotypes and SNPs. Family-based association tests were used to test for association with EH and severity of hypertension in 712 severely hypertensive families from the MRC British Genetics of Hypertension study resource. No association was found between WNK1 polymorphisms or haplotypes with hypertension; however, one SNP rs1468326, located 3 kb from the WNK1 promoter, was found to be nominally associated with severity of hypertension, with both systolic blood pressure (BP) (Z = +2.24, P = 0.025) and diastolic BP (Z = +1.99, P = 0.046). We also found nominal support for association of one common WNK1 haplotype with increased systolic BP (Z = +1.91, P = 0.053). This is the first study to perform haplotype association analysis of the WNK1 gene with EH. This finding of association between a SNP near the promoter region and the severity of hypertension suggests that increased expression of WNK1 might contribute to BP variability and susceptibility to EH similar to the mechanism of hypertension observed in Gordon's syndrome.
It is well established that gene interactions influence common human diseases, but to date linkage studies have been constrained to searching for single genes across the genome. We applied a novel approach to uncover significant gene-gene interactions in a systematic two-dimensional (2D) genome-scan of essential hypertension. The study cohort comprised 2076 affected sib-pairs and 66 affected half-sib-pairs of the British Genetics of HyperTension study. Extensive simulations were used to establish significance thresholds in the context of 2D genome-scans. Our analyses found significant and suggestive evidence for loci on chromosomes 5, 9, 11, 15, 16 and 19, which influence hypertension when gene-gene interactions are taken into account (5q13.1 and 11q22.1, two-locus lod score=5.72; 5q13.1 and 19q12, two-locus lod score=5.35; 9q22.3 and 15q12, two-locus lod score=4.80; 16p12.3 and 16q23.1, two-locus lod score=4.50). For each significant and suggestive pairwise interaction, the two-locus genetic model that best fitted the data was determined. Regions that were not detected using single-locus linkage analysis were identified in the 2D scan as contributing significant epistatic effects. This approach has discovered novel loci for hypertension and offers a unique potential to use existing data to uncover novel regions involved in complex human diseases.
SummaryHypertension affects up to 30% of the adult population in Western societies and is a major risk factor for kidney disease, stroke and coronary heart disease. It is a complex trait thought to be influenced by a number of genes and environmental factors, although the precise aetiology remains unknown at this time. A number of methods have been successfully used to identify mutations that cause Mendelian traits and these are now being applied to the investigation of complex diseases. This review summarises the data gathered, using such approaches, that suggest there is a gene or genes on chromosome 17 causing human essential hypertension.Studies in rodent models are discussed first, followed by studies of human hypertension that include the investigation of pseudohypoaldosteronism type II, a monogenic trait that manifests with hypertension alongside other phenotypic variables. In addition, candidate gene studies, genome screens and linkage studies based on comparative mapping are outlined. To date no gene has been identified on human chromosome 17 that influences blood pressure and causes human essential hypertension. However, results of ongoing fine mapping and candidate gene studies in both rodents and man are eagerly awaited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.