Large scale pilot plants are currently demonstrating the feasibility of the Calcium-looping (CaL) technology built on the multicyclic calcination/carbonation of natural limestone for postcombustion and pre-combustion CO 2 capture. Yet, limestone derived CaO exhibits a drop of conversion when subjected to multiple carbonation/calcination cycles, which lessens the efficiency of the technology. In this paper we analyze a novel CaL concept recently proposed to mitigate this drawback based on the introduction of an intermediate stage wherein carbonation is intensified at high temperature and high CO 2 partial pressure. It is shown that carbonation in this stage is mainly driven by solid-state diffusion, which is determined by the solid's crystal structure. Accordingly, a reduction of crystallinity by ball milling, which favors diffusion, serves to promote recarbonation. Conversely, thermal annealing, which enhances crystallinity, hinders recarbonation. An initial fast phase has been identified in the recarbonation stage along which the rate of carbonation is also a function of the crystal structure indicating a relevant role of surface diffusion. This
In flows of dry particulate systems, electric charge is generated on particle surfaces by their collision with walls and with other particles. Charge build-up on single particles can yield local charge values high enough to surpass the limiting electric field for corona discharge into the surrounding gas. Then, local charge is decreased to a lower value that becomes stabilized when flows stop and particles deposit in a container. In this paper, we have used a Faraday pail system to measure the residual particle charge after using two different devices-tribochargers-for particle charging. One of the tribochargers allowed us to directly measure the total charge that was transferred from the walls to the particles, and this was compared to the final values in the bulk powder once it was collected in the Faraday pail. The results show that the electric charge of particles dispersed in gas is limited by corona discharge and depends mainly on the particle size. In addition, we present a simple model of the discharge of the collected powder based on electrostatic considerations. If the powder effective conductivity and the electric charge of the settling particles are known, the model predicts the temporal evolution of the total charge of the collected powder and the spatial distribution of the electric charge and electric field. Published by AIP Publishing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.