The ability of white rot fungi (WRF) and their lignin modifying enzymes (LMEs), i.e. laccase and lignin‐ and manganese‐dependent peroxidase, to treat endocrine disrupting chemicals (EDCs) is extensively reviewed in this paper. These chemicals cause adverse health effects by mimicking endogenous hormones in receiving organisms. The alkylphenolic EDCs nonylphenol, bisphenol A and triclosan, the phthalic acid esters dibutylphthalate, diethylphthalate and di‐(2‐ethylhexyl)phthalate, the natural estrogens estrone, 17β‐estradiol, estriol and 17α‐ethynylestradiol and the phytoestrogens genistein and β‐sitosterol have been shown to be eliminated by several fungi and LMEs. WRF have manifested a highly efficient removal of EDCs in aqueous media and soil matrices using both LME and non LME‐systems. The ligninolytic system of WRF could also be used for the elimination of several EDCs and the associated hormone‐mimicking activity. The transformation of EDCs by LMEs and WRF is supported by emerging knowledge on the physiology and biochemistry of these organisms and the biocatalytic properties of their enzymes. Due to field reaction conditions, which drastically differ from laboratory conditions, further efforts will have to be directed towards developing robust and reliable biotechnological processes for the treatment of EDC‐contaminated environmental matrices.
Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.