Understanding and predicting turbulent transport in the edge and scrape-off-layer (SOL) of magnetic confinement fusion devices is crucial for developing feasible fusion power plants. In this work, we present the latest improvements to the gyrokinetic turbulence code GENE-X and validate the extended model against experimental results in the TCV tokamak (“TCV-X21”). GENE-X features a full-f electromagnetic gyrokinetic model and is specifically targeted for edge and SOL simulations in diverted geometries. GENE-X can model the effect of collisions using either a basic Bhatnagar–Gross–Krook (BGK) or more sophisticated Lenard–Bernstein/Dougherty (LBD) collision operator. We present the results of a series of GENE-X simulations using the BGK or LBD collision models, contrasting them to collisionless simulations. We validate the resulting plasma profiles, power balance, and SOL heat flux against experimental measurements. The match to the experiment significantly improves with the fidelity of the collision model chosen. We analyze the characteristics of the turbulence and find that in almost all cases in the confined region the turbulence is driven by trapped electron modes (TEM). Both the simulations without collisions and those with the BGK collision operator do not accurately describe turbulence driven by TEMs. The more sophisticated LBD collision operator presents a minimum requirement for accurate gyrokinetic edge turbulence simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.