The Ko sice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Ko sice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan-like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black-gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo 80.6 ); diopside; enstatite (Fs 16.7 ); albite; troilite; Fe-Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase-like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Ko sice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Ko sice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Ko sice chondrite is probably from the same parent body as H5 chondrite Mor avka from Czech Republic. Electron-microprobe analysis (EMPA) with focused and defocused electron beam, whole-rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration-free laser induced breakdown spectroscopy (CF-LIBS) were used to characterize the Ko sice fragments. The results provide further evidence that whole-rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF-LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.
In this study, a possibility of laser-induced breakdown spectroscopy (LIBS) for the analysis of zeolites containing copper, chromium, cobalt, cadmium, and lead in the concentration range of 0.05–0.5 wt.% is discussed. For the LIBS analysis, microporous ammonium form of Y zeolite with the silicon to aluminum molar ratio of 2.49 was selected. Zeolites, in the form of pressed pellets, were prepared by volume impregnation from the water solution using Co(CH3COO)2.4H2O, CuSO4.5H20, K2Cr2O7, PbNO3, and CdCl2 to form a sample with different amounts of heavy metals—Co, Cu, Cr, Pb, and Cd. Several spectral lines of the mentioned elements were selected to be fitted to obtain integral line intensity. To prevent the influence of the self-absorption effect, non-resonant spectral lines were selected for the calibration curves construction in most cases. The calibration curves of all elements are observed to be linear with high regression coefficients. On the other hand, the limits of detection (LOD) were calculated according to the 3σ/S formula using the most intensive spectral lines of individual elements, which are 14.4 ppm for copper, 18.5 ppm for cobalt, 16.4 ppm for chromium, 190.7 ppm for cadmium, and 62.6 ppm for lead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.