We present a study of the in-flight performance of the XMM-Newton EPIC MOS and pn detectors, with focus on the influence of proton flares and vignetting on the data. The very wide range in the conditions of our sample of observations, in terms of exposure length and background intensities, allows the detection of a wide range in the spectra of the proton flares, in contrast to the hard-spectrum flares proposed by Lumb et al. (2002, A&A, 389, 93) or Read & Ponman (2003, A&A, 409, 395). We also find an up to now unreported contamination in the low energy regime (E ≤ 0.5 keV) of the MOS1 observations, consisting of a significant increase in the measured intensities in two CCDs at the edges of the detector. This contamination yields in bright CCDs in the observations. Its effect must be taken into account for the study of sources detected in the affected CCDs. With respect to vignetting, we present in-flight exposure maps and we propose a method to repeat this calculation for user-definable energy bands. All the results presented here, have the goal to enable the study of very faint extended sources with XMM-Newton, like nearby galactic X-ray halos or the soft X-ray background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.