We have measured the angular distribution of recoiling daughter nuclei emitted from the Gamow-Teller β decay of spin-polarized 80 Rb. The asymmetry of this distribution vanishes to lowest order in the standard model (SM) in pure Gamow-Teller decays, producing an observable very sensitive to new interactions. We measure the non-SM contribution to the asymmetry to be A T = 0.015 ± 0.029 (stat) ±0.019 (syst), consistent with the SM prediction. We constrain higher-order SM corrections using the measured momentum dependence of the asymmetry, and their remaining uncertainty dominates the systematic error. Future progress in determining the weak magnetism term theoretically or experimentally would reduce the final errors. We describe the resulting constraints on fundamental four-Fermi tensor interactions.
Localized and cold samples of atoms produced with laser cooling and trapping techniques are a powerful tool for nuclear β-decay experiments. Recently we have concentrated on measurements of the momentum of the daughter ion produced, which leads to a variety of new observables. Angular distributions of the recoils with respect to the nuclear spin in β + decay are sensitive to non-standard model interactions. Measurements of the momentum of monoenergetic recoils from either electron capture or isomer γ decay would make it possible to search for particles with masses of 10s of keV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.