Selenium is of fundamental importance to human health. It is an essential component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defence systems, and immune function. The decline in blood selenium concentration in the UK and other European Union countries has therefore several potential public health implications, particularly in relation to the chronic disease prevalence of the Western world such as cancer and cardiovascular disease. Ten years have elapsed since recommended dietary intakes of selenium were introduced on the basis of blood glutathione peroxidase activity. Since then 30 new selenoproteins have been identified, of which 15 have been purified to allow characterisation of their biological function. The long term health implications in relation to declining selenium intakes have not yet been thoroughly examined, yet the implicit importance of selenium to human health is recognised universally. Selenium is incorporated as selenocysteine at the active site of a wide range of selenoproteins. The four glutathione peroxidase enzymes (classical GPx1, gastrointestinal GPx2, plasma GPx3, phospholipid hydroperoxide GPx4)) which represent a major class of functionally important selenoproteins, were the first to be characterised. Thioredoxin reductase (TR) is a recently identified seleno-cysteine containing enzyme which catalyzes the NADPH dependent reduction of thioredoxin and therefore plays a regulatory role in its metabolic activity.
Long-term selenium status in children from the North-East of Scotland was estimated using whole blood selenium content (BSe) and glutathione peroxidase activity (BGSH-Px). BSe was significantly lower than the reference range in children with cystic fibrosis, coeliac disease and in older patients with phenylketonuria. Whereas BGSH-Px of all the children with coeliac disease and those with cystic fibrosis aged over 6 years matched the reference range, it was reduced in younger patients with cystic fibrosis and in children with dietetically treated phenylketonuria. No child had clinical features of selenium deficiency. BSe in treated epileptics and asthmatics conformed to the reference range, but BGSH-Px in both groups was increased significantly; this was most evident in those receiving corticosteroid preparations.
In selenium-deficient rats, peripheral T4 to T3 conversion is markedly decreased due to the loss of the selenoprotein, type I iodothyronine 5'-deiodinase (5'D-I). Despite the marked increase in circulating T4 that results from this loss of 5'D-I, serum T3 concentrations in selenium-deficient rats remain in the normal range. To determine the physiological mechanism(s) that maintains circulating T3 when peripheral T4 to T3 conversion is impaired, we examined the interrelationships between selenium intake and the metabolism of T3 and T4 in the rat. In euthyroid rats, selenium deficiency caused the expected loss of 5'D-I, with a 52% increase in serum T4, which paralleled an increase in the T4 biological half-life. Consistent with the prolonged t1/2 of T4, short term thyroidectomy (48 h) in selenium-deficient rats failed to decrease serum T4 concentrations to the levels observed in short term thyroidectomized, selenium-supplemented rats. Short term thyroidectomy also caused an expected 33% decrease in liver 5'D-I and a 44% increase in brain type II iodothyronine 5'-deiodinase (5'D-II) activities in selenium-supplemented rats. However, in selenium-deficient rats, short term thyroidectomy did not affect 5'D-I or 5'D-II activities. In contrast to the selenium-dependent changes in circulating T4 levels, little or no change in circulating T3 concentrations occurred. There was a 20% increase in the T3 half-life in selenium-deficient rats. The serum T3 sulfate concentration was increased, and T3 deiodination was reciprocally decreased in the selenium-deficient rats. These data suggest that increased T3 sulfate generation in selenium-deficient rats may lead to greater T3 availability through enterohepatic recycling of the iodothyronine and may explain why there are only minor changes in serum T3 concentrations in selenium-deficient rats.
Considers the role of selenium as an essential nutrient. Identifies its key function as being an essential component of a wider range of proteins. Looks at some of the problems related to selenium deficiency such as associations with increased incidence of cancer of heart disease. Reports falling selenium intakes in the UK over the last 15‐20 years and describes a supplementation trial based in Scotland.
The occurrence and incidence of pneumonia in housed calves were not related to the selenium status of the herd as measured by blood glutathione peroxidase activity nor were they affected by selenium treatment of calves during the neonatal period. Pneumonia was related more closely to herd size and building design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.