The electrocardiogram (ECG) is the most common tool used to predict left ventricular hypertrophy (LVH). However, it is limited by its low accuracy (<60%) and sensitivity (30%). We set forth the hypothesis that the Machine Learning (ML) C5.0 algorithm could optimize the ECG in the prediction of LVH by echocardiography (Echo) while also establishing ECG-LVH phenotypes. We used Echo as the standard diagnostic tool to detect LVH and measured the ECG abnormalities found in Echo-LVH. We included 432 patients (power = 99%). Of these, 202 patients (46.7%) had Echo-LVH and 240 (55.6%) were males. We included a wide range of ventricular masses and Echo-LVH severities which were classified as mild (n = 77, 38.1%), moderate (n = 50, 24.7%) and severe (n = 75, 37.1%). Data was divided into a training/testing set (80%/20%) and we applied logistic regression analysis on the ECG measurements. The logistic regression model with the best ability to identify Echo-LVH was introduced into the C5.0 ML algorithm. We created multiple decision trees and selected the tree with the highest performance. The resultant five-level binary decision tree used only six predictive variables and had an accuracy of 71.4% (95%CI, 65.5-80.2), a sensitivity of 79.6%, specificity of 53%, positive predictive value of 66.6% and a negative predictive value of 69.3%. Internal validation reached a mean accuracy of 71.4% (64.4-78.5). Our results were reproduced in a second validation group and a similar diagnostic accuracy was obtained, 73.3% (95%CI, 65.5-80.2), sensitivity (81.6%), specificity (69.3%), positive predictive value (56.3%) and negative predictive value (88.6%). We calculated the Romhilt-Estes multilevel score and compared it to our model. The accuracy of the Romhilt-Estes system had an accuracy of 61.3% (CI95%, 56.5-65.9), a sensitivity of 23.2% and a specificity of 94.8% with similar results in the external validation group. In conclusion, the C5.0 ML algorithm surpassed the accuracy of current ECG criteria in the detection of Echo-LVH. Our
Galectin-3 is elevated in diabetic patients with mdEF, and is associated with a diminished GLS. GLS could be an early marker of left ventricular dysfunction as well as evidence of diabetic cardiomyopathy.
Whole-body cryotherapy (WBC) involves short exposures to air temperatures below -100°C and is purported to enhance recovery after exercise and accelerate rehabilitation after injury. It is generally considered a procedure with few side effects, but there are no large studies that have established its safety profile. We present the case of a 56-year-old patient who developed an abdominal aortic dissection after receiving 15 sessions of WBC. The patient had no other strong risk factors for aortic dissection. Exposure to cold temperatures, including WBC, has multiple hemodynamic effects, including increases in blood pressure, heart rate, and an adrenergic response. We suggest that these changes could act as a trigger for the onset of aortic dissections. This could be the first reported cardiovascular complication associated with WBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.