Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented.
We measure the fractal dimension of an African plant that is widely cultivated as ornamental, the Asparagus plumosus. This plant presents self-similarity, remarkable in at least two different scalings. In the following, we present the results obtained by analyzing this plant via the box counting method for three different scalings. We show in a quantitatively way that this species is a fractal.
The complexity of the Nautilus pompilius shell is analyzed in terms of its fractal dimension and its equiangular spiral form. Our findings assert that the shell is fractal from its birth and that its growth is dictated by a self-similar criterion (we obtain the fractal dimension of the shell as a function of time). The variables that have been used for the analysis show an exponential dependence on the number of chambers/age of the cephalopod, a property inherited from its form.
A method for interpreting elastic-lidar return signals in heavily-polluted atmospheres is presented. It is based on an equation derived directly from the classic lidar equation, which highlights gradients of the atmospheric backscattering properties along the laser optical path. The method is evaluated by comparing its results with those obtained with the differential absorption technique. The results were obtained from locating and ranging measurements in pollutant plumes and contaminated environments around central México.
While conducting a study with air in a simple closed rectangular cavity, we have discovered the formation of highly impressive, complex-structured, and symmetrical smoke density patterns. Using the box counting method the fractal characteristic of the patterns is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.