The isotope shifts of forbidden transitions in Be- and B-like argon ions are
calculated. It is shown that only using the relativistic recoil operator can
provide a proper evaluation of the mass isotope shift, which strongly dominates
over the field isotope shift for the ions under consideration. Comparing the
isotope shifts calculated with the current experimental uncertainties indicates
very good perspectives for a first test of the relativistic theory of the
recoil effect in middle-Z ions
Recent developments in frequency metrology and optical clocks have been based on electronic transitions in atoms and singly charged ions as references. The control over all relevant degrees of freedom in these atoms has enabled relative frequency uncertainties at a level of a few parts in 10 −18 . This accomplishment not only allows for extremely accurate time and frequency measurements, but also to probe our understanding of fundamental physics, such as a possible variation of fundamental constants, a violation of the local Lorentz invariance, and the existence of forces beyond the Standard Model of Physics. In addition, novel clocks are driving the development of sophisticated technical applications. Crucial for applications of clocks in fundamental physics are a high sensitivity to effects beyond the Standard Model and Einstein's Theory of Relativity and a small frequency uncertainty of the clock. Highly charged ions offer both. They have been proposed as highly accurate clocks, since they possess optical transitions which can be extremely narrow and less sensitive to external perturbations compared to current atomic clock species. The large selection of highly charged ions in different charge states offers narrow transitions that are among the most sensitive ones for a change in the finestructure constant and the electron-to-proton mass ratio, as well as other new physics effects. Recent experimental advances in trapping and sympathetic cooling of highly charged ions will in the future enable advanced quantum logic techniques for controlling motional and internal degrees of freedom and thus enable high accuracy optical spectroscopy. Theoretical progress in calculating the properties of selected highly charged ions has allowed the evaluation of systematic shifts and the prediction of the sensitivity to the "new physics" effects. New theoretical challenges and opportunities emerge from relativistic, quantum electrodynamics, and nuclear size contributions that become comparable with interelectronic correlations. This article reviews the current status of theory and experiment in the field, addresses specific electronic configurations and systems which show the most promising properties for research, their potential limitations, and the techniques for their study.
Vector momentum distributions of two electrons created in double ionization of Ar by 25 fs, 0.25 PW/cm(2) laser pulses at 795 nm have been measured using a "reaction microscope." At this intensity, where nonsequential ionization dominates, distinct correlation patterns are observed in the two-electron momentum distributions. A kinematical analysis of these spectra within the classical "recollision model" revealed an (e,2e)-like process and excitation with subsequent tunneling of the second electron as two different ionization mechanisms. This allows a qualitative separation of the two mechanisms demonstrating that excitation-tunneling is the dominant contribution to the total double ionization yield.
The magnetic-dipole transition probabilities between the fine-structure
levels (1s^2 2s^2 2p) ^2P_1/2 - ^2P_3/2 for B-like ions and (1s^2 2s 2p) ^3P_1
- ^3P_2 for Be-like ions are calculated. The configuration-interaction method
in the Dirac-Fock-Sturm basis is employed for the evaluation of the
interelectronic-interaction correction with negative-continuum spectrum being
taken into account. The 1/Z interelectronic-interaction contribution is derived
within a rigorous QED approach employing the two-time Green function method.
The one-electron QED correction is evaluated within framework of the anomalous
magnetic-moment approximation. A comparison with the theoretical results of
other authors and with available experimental data is presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.