This paper describes the control of a batch pH reactor by a nonlinear predictive controller that improves performance by using data of past batches. The control strategy combines the feedback features of a nonlinear predictive controller with the learning capabilities of run-to-run control. The inclusion of real-time data collected during the on-going batch run in addition to those from the past runs make the control strategy capable not only of eliminating repeated errors but also of responding to new disturbances that occur during the run. The paper uses these ideas to devise an integrated controller that increases the capabilities of Nonlinear Model Predictive Control (nmpc) with batch-wise learning. This controller tries to improve existing strategies by the use of a nonlinear controller devised along the last-run trajectory as well as by the inclusion of filters. A comparison with a similar controller based upon a linear model is performed. Simulation results are presented in order to illustrate performance improvements that can be achieved by the new method over the conventional iterative controllers. Although the controller is designed for discrete-time systems, it can be applied to stable continuous plants after discretization.
This paper presents the application of Iterative Nonlinear Model Predictive Control, INMPC, to a semibatch chemical reactor. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (MPC) with the possibility of learning from past batches, that is the base of Iterative Control. It uses a nonlinear model and a quadratic objective function that is optimized in order to obtain the control law. A stability proof with unitary control horizon is given for nonlinear plants that are affine in control and have linear output map.The controller shows capabilities to learn the optimal trajectory after a few iterations, giving a better fit than a linear non-iterative MPC controller. The controller has applications in repetitive disturbance rejection, because they do not modify the model for control purposes. In this application, some experiments with a disturbance in inlet water temperature has been performed, getting good results.
This paper presents a constructive algorithm to design local controllers for feedback systems that are interconnected via time-varying and asynchronous sampling. These systems result in many application fields such as remotely-operated systems, interconnected vehicle control loops, and more generally in component-based control design where synchronous exchange of information is not feasible. The design is based on the (MASP) MAximum Sampling time preserving Passivity, and uses discrete-time passivity considerations. The paper first explores several ways to compute the MASP for linear systems, and then proposes a numerical algorithm to compute local feedback loops providing a MASP compatible with the maximum sampling-time upperbound of each subsystem. This results in a exponentially stable interconnection. The paper also presents a simulation example of this design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.