A reprogrammable digital transponder architecture allows a common product design to be scaled to meet varying user capacity requirements, match the transponder to the spacecraft resources, and maximize affordability by minimizing non-recurring costs. On-orbit frequency programmability permits the design and hardware development to proceed in parallel with the frequency coordination process, reducing schedule risks and providing operational flexibility. Leverage of digital processing technologies achieves improved channel performance characteristics compared with traditional implementations while also allowing channel characteristics such as selectivity, adjacent channel rejection, and channel frequency plans to be altered in response to the on-orbit interference environment. Channel passband shapes can also be altered for higher capacity waveforms that require different passband shapes or that need improved phase linearity over wider passbands than legacy waveforms. The ability to change these parameters on-orbit in response to upgraded ground terminal technology made possible by software-based radios will allow extended mission life without compromising communications capabilities. An ultra-high frequency (UHF) transponder with a scalable, expandable (or contractible) modular architecture, on-orbit frequency selection over entire communications bands, and functional reprogrammability through digital signal processing capabilities is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.