In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations for the magnetization and its moments at an early stage of the dynamic evolution. Our estimates for the dynamic exponents, at the tricritical point, are z=2.215(2) and theta=-0.53(2).
The global persistence exponent theta(g) is calculated for the two-dimensional Blume-Capel model following a quench to the critical point from both disordered states and such with small initial magnetizations. Estimates are obtained for the nonequilibrium critical dynamics on the critical line and at the tricritical point. Ising-like universality is observed along the critical line and a different value theta(g)=1.080(4) is found at the tricritical point.
We study the early time behavior of the Baxter-Wu model, an Ising model with three-spin interactions on a triangular lattice. Our estimates for the dynamic exponent z are compatible with results recently obtained for two models which belong to the same universality class of the Baxter-Wu model: the two-dimensional four-state Potts model and the Ising model with three-spin interactions in one direction. However, our estimates for the dynamic exponent theta of the Baxter-Wu model are completely different from the values obtained for those models. This discrepancy could be related to the absence of a marginal operator in the Baxter-Wu model.
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q = 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.