Hyaluronan (hyaluronic acid) is a high-molecular-mass polysaccharide found in the extracellular matrix, especially of soft connective tissues. It is synthesized in the plasma membrane of fibroblasts and other cells by addition of sugars to the reducing end of the polymer, whereas the nonreducing end protrudes into the pericellular space. The polysaccharide is catabolized locally or carried by lymph to lymph nodes or the general circulation, from where it is cleared by the endothelial cells of the liver sinusoids. The overall turnover rate is surprisingly rapid for a connective tissue matrix component (t1/2 0.5 to a few days). Hyaluronan has been assigned various physiological functions in the intercellular matrix, e.g., in water and plasma protein homeostasis. Hyaluronan production increases in proliferating cells and the polymer may play a role in mitosis. Extensive hyaluronidase-sensitive coats have been identified around mesenchymal cells. They are either anchored firmly in the plasma membrane or bound via hyaluronan-specific binding proteins (receptors). Such receptors have now been identified on many different cells, e.g., the lymphocyte homing receptor CD 44. Interaction between a hyaluronan receptor and extracellular polysaccharide has been connected with locomotion and cell migration. Hyaluronan seems to play an important role during development and differentiation and has other cell regulatory activities. Hyaluronan has also been recognized in clinical medicine. A concentrated solution of hyaluronan (10 mg/ml) has, through its tissue protective and rheological properties, become a device in ophthalmic surgery. Analysis of serum hyaluronan is promising in the diagnosis of liver disease and various inflammatory conditions, e.g., rheumatoid arthritis. Interstitial edema caused by accumulation of hyaluronan may cause dysfunction in various organs.
Fraser JRE, Laurent TC, Laurent UBG (Monash University, Clayton, Victoria, Australia; and University of Uppsala, Uppsala, Sweden). Hyaluronan: its nature, distribution, functions and turnover (Minisymposium: Hyaluronan). J Intern Med 1997; 242: 27–33. Hyaluronan is a polysaccharide found in all tissues and body fluids of vertebrates as well as in some bacteria. It is a linear polymer of exceptional molecular weight, especially abundant in loose connective tissue. Hyaluronan is synthesized in the cellular plasma membrane. It exists as a pool associated with the cell surface, another bound to other matrix components, and a largely mobile pool. A number of proteins, the hyaladherins, specifically recognize the hyaluronan structure. Interactions of this kind bind hyaluronan with proteoglycans to stabilize the structure of the matrix, and with cell surfaces to modify cell behaviour. Because of the striking physicochemical properties of hyaluronan solutions, various physiological functions have been assigned to it, including lubrication, water homeostasis, filtering effects and regulation of plasma protein distribution. In animals and man, the half‐life of hyaluronan in tissues ranges from less than 1 to several days. It is catabolized by receptor‐mediated endocytosis and lysosomal degradation either locally or after transport by lymph to lymph nodes which degrade much of it. The remainder enters the general circulation and is removed from blood, with a half‐life of 2–5 min, mainly by the endothelial cells of the liver sinuoids.
Hyaluronan is a major component of synovial tissue and fluid as well as other soft connective tissues. It is a high-Mr polysaccharide which forms entangled networks already at dilute concentrations (< 1 mg/mL) and endows its solutions with unique rheological properties. Physiological functions of hyaluronan (lubrication, water homeostasis, macromolecular filtering, exclusion, etc.) have been ascribed to the properties of these networks. Recently a number of specific interactions between hyaluronan and a group of proteins named hyaladherins have also pointed towards a role of hyaluronan in recognition and the regulation of cellular activities. Many more or less well documented hypotheses have been proposed for the function of hyaluronan in joints, for example, that it should lubricate, protect cartilage surfaces, scavenge free radicals and debris, keep the joint cavities open, form flow barriers in the synovium and prevent capillary growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.