In this paper we consider a frictionless contact problem between an elastic-viscoplastic body and an obstacle. The process is assumed to be quasistatic and the contact is modeled with normal compliance. We present a variational formulation of the problem and prove the existence and uniqueness of the weak solution, using strongly monotone operators arguments and Banach's fixed point theorem. We also study the numerical approach to the problem using spatially semi-discrete and fully discrete finite elements schemes with implicit and explicit discretization in time. We show the existence of the unique solution for each of the schemes and derive error estimates on the approximate solutions. Finally, we present some numerical results involving examples in one, two and three dimensions. (2000): 65N30, 74C10, 74M15, 74S05
Mathematics Subject Classification
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.