We have demonstrated a low noise superconducting MgB 2 hot electron bolometer (HEB) mixer working at the frequency of 5.3 terahertz (THz) with 20 K operation temperature. The bolometer consists of a 7 nm thick MgB 2 submicrometer bridge contacted with a spiral antenna to couple THz radiation through a high resistive Si lens, and it has a superconducting critical temperature of 38 K. By using hot/cold blackbody loads and a Mylar beam splitter all in vacuum and applying a 5.25 THz far-infrared gas laser as a local oscillator, we measured a minimal double sideband receiver noise temperature of 3960 K at the LO power of 9.5 lW. This can be further reduced to 2920 K if a Si lens with an antireflection coating optimized at this frequency and a 3 lm beam splitter are used. The measured intermediate frequency (IF) noise bandwidth is 9.5 GHz. The low noise, wide IF bandwidth mixers, which can be operated in a compact, low dissipation Stirling cooler, are more suitable for space applications than the existing HEB mixers. Furthermore, we likely observed a signature of the double-gap in MgB 2 by comparing current-voltage curves pumped at 5.3 and 1.6 THz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.