We have studied THz heterodyne detection in sub-micrometer MgB2 hot electron bolometer (HEB) mixers based on superconducting MgB2 films of [Formula: see text] (HEB-A), corresponding to a critical temperature ( Tc) of 33.9 K, and [Formula: see text] (HEB-B), corresponding to a [Formula: see text] of 38.4 K. We have measured a double sideband (DSB) receiver noise temperature of 2590 K for HEB-A and 2160 K for HEB-B at 1.6 THz and 5 K. By correcting for optical losses, both HEBs show receiver noise temperatures of ∼1600 K referenced to the front of anti-reflection (AR)-coated Si lenses. An intermediate frequency (IF) noise bandwidth of 11 GHz has been measured for both devices. The required local oscillator (LO) power is about 13 μW for both HEBs. We have also measured a DSB receiver noise temperature of 3290 K at 2.5 THz and 5 K but with an AR-coated lens optimized for 1.6 THz. Besides, we have observed a step-like structure in current voltage (IV) curves, which becomes weaker when the LO power increases and observable only in their differential resistance. Such a correlated structure appears also in the receiver output power as a function of voltage, which is likely due to electronic inhomogeneities intrinsic to the variations in the thickness of the MgB2 films. Different behavior in the IV curves around the low bias voltages, pumped with the same LO power at 1.6 and 5.3 THz, was observed for HEB-B, suggesting the presence of a high-energy σ-gap in the MgB2 film.
Large heterodyne receiver arrays (~100 pixel) allow astronomical instrumentations mapping more area within limited space mission lifetime. One challenge is to generate multiple local oscillator (LO) beams. Here, We succeeded in generating 81 beams at 3.86 THz by combining a reflective, metallic Fourier grating with an unidirectional antenna coupled 3rd-order distributed feedback (DFB) quantum cascade laser (QCL). We have measured the diffracted 81 beams by scanning a single pyroelectric detector at a plane, which is in the far field for the diffraction beams. The measured output beam pattern agrees well with a simulated result from COMSOL Multiphysics with respect to the angular distribution and power distribution among the 81 beams. We also derived the diffraction efficiency to be 94±3%, which is very close to what was simulated for a manufactured Fourier grating (97%). For an array of equal superconducting hot electron bolometer mixers, 64 out of 81 beams can pump the HEB mixers with similar power, resulting in receiver sensitivities within 10%. Such a combination of a Fourier grating and a QCL can create an LO with 100 beams or more, enabling a new generation of large heterodyne arrays for astronomical instrumentation. This paper is essentially a copy of our paper in Optics Express.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.