We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.
We have demonstrated three 4×2 hot electron bolometer (HEB) mixer arrays for operation at local oscillator (LO) frequencies of 1.46, 1.9 and 4.7 THz, respectively. They consist of spiral antenna coupled NbN HEB mixers combined with elliptical lenses. These are to date the highest pixel count arrays using a quasi-optical coupling scheme at supra-THz frequencies. At 1.4 THz, we measured an average double sideband mixer noise temperature of 330 K, a mixer conversion loss of 5.7 dB, and an optimum LO power of 210 nW. The array at 1.9 THz has an average mixer noise temperature of 420K, a conversion loss of 6.9 dB, and an optimum LO power of 190 nW. For the array at 4.7 THz, we obtained an average mixer noise temperature of 700 K, a conversion loss of 9.7 dB, and an optimum LO power of 240 nW. We found the arrays to be uniform regarding the mixer noise temperature with a standard deviation of 3-4%, the conversion loss with a standard deviation of 7-10%, and optimum LO power with a standard deviation of 5-6%. The noise bandwidth was also measured, being 3.5 GHz for the three arrays. These performances are comparable to previously reported values in the literature for single pixels and also other detector arrays. Our arrays meet the requirements of the Galactic/Extra-Galactic ULDB Spectroscopic Terahertz Observatory (GUSTO), a NASA balloon borne observatory, and are therefore scheduled to fly as part of the payload, which is expected to be launched in December 2023.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.