The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut für Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities.
Using a neutral-beam injection power of 3.4 M W, volume-averaged toroidal betas of up to ⟨βT⟩ = 4.5% have been obtained in low-toroidal-field, low-qψ, vertically elongated discharges in the Doublet III tokamak. This level of ⟨βT⟩ is above the minimum level required for a tokamak reactor, thus demonstrating that reactor level values of ⟨βT⟩ are possible in a tokamak device. The observed enhancement of ⟨βT⟩ with vertical elongation lends confidence in the design of future devices which rely on vertical elongation.
ITER: CONCERT DEFINITION. On the basis of the results of the investigation carried out since May 1988, an ITER concept has been defined which incorporates the maximum possible flexibility and allows a variety of plasma configurations and operating scenarios. For technology experiments, with a full breeding blanket, the machine can be operated typically with a plasma of 18 MA at a major radius of 5.5 tn. For the plasma physics experiments the same machine can, if required, be cot@ured with a thinner shield and produce a plasma of 22 MA with fully inductive operation and higher currents under limited conditions. A list of important ITER specific physics and technology R&D tasks has been developed. Implementation of these tasks is now under way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.