Previous investigations demonstrated that CYP2D16 was expressed at high levels in guinea pig adrenal microsomes. The studies presented here were done to determine whether adrenal metabolism of bufuralol (BUF), a model CYP2D substrate, was similar to that in the liver. Guinea pig adrenal microsomes converted BUF to 1′-hydroxybufuralol (1′-OH-BUF) as the major metabolite and smaller amounts of a compound identified as 6-hydroxybufuralol (6-OH-BUF). In contrast, 6-OH-BUF was the major product formed by hepatic microsomal preparations. The apparent Km values were similar for 1′-OH-BUF and 6-OH-BUF production in each tissue. Quinidine, a selective CYP2D inhibitor, decreased the production of both BUF metabolites equally in liver and adrenal microsomes. Cortisol also caused equivalent decreases in the rates of 1′-OH-BUF and 6-OH-BUF formation by adrenal microsomes, but had no effect on hepatic BUF metabolism. Although both BUF metabolites may be produced by CYP2D16, unknown factors appear to effect some differences in the catalytic characteristics of BUF metabolism in adrenal and liver. The large amount of 6-OH-BUF produced distinguishes BUF metabolism in guinea pigs from that in other species previously studied.
Previous studies demonstrated high levels of lipid peroxidation (LP) in the guinea pig adrenal cortex. The present studies were done to determine if adrenal LP activity was influenced by ACTH, the major hormonal regulator of the gland. Guinea pigs were treated with ACTH for 1, 3 or 7 days. In addition, some guinea pigs received ACTH for 7 days and were killed 3 or 7 days later. After treatment, adrenal microsomal fractions were prepared and incubated in vitro with 1 mM ferrous sulfate to initiate LP. ACTH treatment caused a progressive decrease in adrenal LP; activity was almost totally inhibited within 3 days. The inhibitory effects of ACTH on LP were dose-dependent. Following cessation of ACTH treatment, adrenal LP gradually returned toward control levels. Microsomal concentrations of linoleic acid, a major substrate for adrenal LP, were increased by ACTH administration and then also returned to control levels after cessation of treatment. There were no significant changes in adrenal -tocopherol or -carotene concentrations resulting from ACTH treatment. The results indicate that ACTH has a role in the regulation of adrenal LP. The actions of ACTH cannot be attributed to an increase in adrenal content of the antioxidants, -tocopherol and -carotene, or to a decrease in LP substrate. The actions of ACTH to inhibit LP may contribute to an increase in adrenal hormone production by protecting steroidogenic enzymes from peroxidative degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.