A forest succession simulator, SILVA, has been developed for the mixed—conifer forest (seven major species) of the Sierra Nevada, California, to simulate the effects of fire on forest dynamics. SILVA is an extensive modification of a simulator for forests of the northeastern United States. The simulation includes the time development of the growth in tree diameter, tree height, and leaf—area index. Recruitment and mortality are modeled stochastically. Modifications include fire ecology, temporal seed—crop patterns, and seedling—survival factors unique to Sierra Nevada forests. The probability of mortality from fire is determined by the height of crown scorch (a function of fire intensity, diameter at breast height, and bark thickness). The model simulates the dynamic and structural responses of communities to many factors. For 500—yr simulations from an initial clear—cut condition, the time—averaged basal—area ratios of Pinus ponderosa to Abies concolor were 5.2:1 and 1:16 for elevations of 1524 m and 1829 m, respectively. At 1524 m, the ratio of P. ponderosa to A. concolor decreased 59% when fire suppression was introduced. Fire provides P. ponderosa with a strong competitive advantage. Its growth form and growth rate are significant factors in its ability to evade fire. Rank correlations of species were compared with data for stands of ponderosa pine and white fir. Correlations were significant at 1% and 10% levels, respectively.
Introduction Anatomic anterior cruciate ligament (ACL) reconstruction has proven to be a reliable method to restore knee stability. However, the risk of physeal arrest with transphyseal tunnel placement in skeletally immature patients has raised concern regarding this technique. Conservative nonoperative management also has its limitations resulting in meniscal and chondral damage that may lead to degenerative joint disease and poor return to sport. Researchers have used animal models to study the threshold of physeal damage producing growth deformity. The purpose of this study was to examine the distal femoral and proximal tibial physes and determine the damage produced by drilling transphyseal tunnels. In addition, we attempted to find a reproducible angle at which to drill the tibial tunnel for safe interference screw placement. To do this, we used a custom software module. Methods A custom software package designed by our team was used: Module for Adolescent ACL Reconstructive Surgery (MAARS). This module created a 3-dimensional model of the distal femur and proximal tibia. The data required for MAARS were sagittal and coronal T1 magnetic resonance imagings of at least 1.5T. Thirty-one knee magnetic resonance imaging studies from patients aged 10 to 15 years old were used. The physes were segmented out to obtain volumetric measurements. Transphyseal tunnels were simulated based on the anatomic trajectory of the native ACL. The module calculated volume of physis was removed with the use of an 8-mm tunnel and the optimum angle for trajectory. Results Average volume of the tibial and femoral physis was 12,683.1 μL and 14,708.3 μL, respectively. The volume increased linearly with age. Average volume removed from the tibial and femoral physis was 318.4 μL and 306.29 μL, respectively. This represented 2.4% of the distal femoral physis and 2.5% of the proximal tibial physis. The volume percent removed decreased linearly with age. Manipulation of the variables demonstrates graft radius is the most critical parameter affecting the volume of physeal injury. Variation of graft diameter from 6 mm to 11 mm will increase volume percent removed from 2.3% to 7.8%, which averages 1.1% for every 1 mm increase. Increasing tunnel drill angle from 45 degrees to 70 degrees will decrease volume percent removed from 4.1% to 3.1% which averages 0.2% removed for each 5 degrees increase in drill angle. The average angle to maintain a distance of 20 mm from the proximal tibial physis was 65 degrees with a range of 40 degrees to 85 degrees. Discussion Less than 3% injury occurs when drilling an 8-mm tunnel across the physis. A vertical tunnel has minimal effect, but the tunnel diameter is critical. Interference screws can be placed safely to avoid the physis but requires careful planning. The MAARS module may be helpful in preoperative planning. Level of Evidence Diagnostic, level IV.
We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc., are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.