Brain–computer interfaces are systems capable of mapping brain activity to specific commands, which enables to remotely automate different types of processes in hardware devices or software applications. However, the development of brain–computer interfaces has been limited by several factors that affect their performance, such as the characterization of events in brain signals and the excessive processing load generated by the high volume of data. In this paper, we propose a method based on computational intelligence techniques to handle these problems, turning them into a single optimization problem. An artificial neural network is used as a classifier for event detection, along with an evolutionary algorithm to find the optimal subset of electrodes and data points that better represents the target event. The obtained results indicate our approach is a competitive and viable alternative for feature extraction in electroencephalograms, leading to high accuracy values and allowing the reduction of a significant amount of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.