This paper presents the architecture developed in the framework of the AWARE project for the autonomous distributed cooperation between unmanned aerial vehicles (UAVs), wireless sensor/actuator networks and ground camera networks. One of the main goals was the demonstration of useful actuation capabilities involving multiple ground and aerial robots in the context of civil applications. A novel characteristic is the demonstration in field experiments of the transportation and deployment of the same load with single/multiple autonomous aerial vehicles.The architecture is endowed with different modules that solve the usual problems that arise during the execution of multi-purpose missions, such as task allocation, conflict resolution, task decomposition and sensor data fusion. The approach had to satisfy two main requirements: robustness for the operation in disaster management scenarios and easy integration of different autonomous vehicles. The former specification led to a distributed design and the latter was tackled by imposing several requirements on the execution capabilities of the vehicles to be integrated in the platform.
Multirotor aerial robots are becoming widely used for the inspection of powerlines. To enable continuous, robust inspection without human intervention, the robots must be able to perch on the powerlines to recharge their batteries. Highly versatile perching capabilities are necessary to adapt to the variety of configurations and constraints that are present in real powerline systems. This paper presents a novel perching trajectory generation framework that computes perception-aware, collisionfree, and dynamically-feasible maneuvers to guide the robot to the desired final state. Trajectory generation is achieved via solving a Nonlinear Programming problem using the Primal-Dual Interior Point method. The problem considers the full dynamic model of the robot down to its single rotor thrusts and minimizes the final pose and velocity errors while avoiding collisions and maximizing the visibility of the powerline during the maneuver. The generated maneuvers consider both the perching and the posterior recovery trajectories. The framework adopts costs and constraints defined by efficient mathematical representations of powerlines, enabling online onboard execution in resource-constrained hardware. The method is validated on-board an agile quadrotor conducting powerline inspection and various perching maneuvers with final pitch values of up to 180°. The developed code is available online at: https://github.com/grvcPerception/pa powerline perching
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.