We examine the e cacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and thed ū flavor asymmetry in the proton. A detailed 2 analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from DrellYan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of 4 ⇥ 10 4 . x ⇡ . 0.05 at a scale of Q 2 = 10 GeV 2 . Based on the fit results, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Je↵erson Lab on the deuteron with forward protons.
We show that a system of three species of one-dimensional fermions, with an attractive three-body contact interaction, features a scale anomaly directly related to the anomaly of two-dimensional fermions with two-body contact forces. We show, furthermore, that those two cases (and their multispecies generalizations) are the only nonrelativistic systems with contact interactions that display a scale anomaly. While the two-dimensional case is well known and has been under study both experimentally and theoretically for years, the one-dimensional case presented here has remained unexplored. For the latter, we calculate the impact of the anomaly on the equation of state, which appears through the generalization of Tan's contact for three-body forces, and determine the pressure at finite temperature. In addition, we show that the third-order virial coefficient is proportional to the second-order coefficient of the two-dimensional two-body case.
In one spatial dimension, quantum systems with an attractive three-body contact interaction exhibit a scale anomaly. In this work, we examine the few-body sector for up to six particles. We study those systems with a self-consistent, non-perturbative, iterative method, in the subspace of zero total momentum. Exploiting the structure of the contact interaction, the method reduces the complexity of obtaining the wavefunction by three powers of the dimension of the Hilbert space. We present results on the energy, and momentum and spatial structure, as well as Tan's contact. We find a Fermi-Fermi crossover interpolating between large, weakly bound trimers and compact, deeply bound trimers: at weak coupling, the behavior is captured by degenerate perturbation theory; at strong coupling, the system is governed by an effective theory of heavy trimers (plus free particles in the case of asymmetric systems). Additionally, we find that there is no trimer-trimer attraction and therefore no six-body bound state. arXiv:1811.05418v1 [cond-mat.quant-gas]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.