Releasing business microdata is a challenging problem for many statistical agencies. Businesses with distinct continuous characteristics such as extremely high income could easily be identified while these businesses are normally included in surveys representing the population. In order to provide data users with useful statistics while maintaining confidentiality, some statistical agencies have developed online based tools to allow users to specify and request tables created from microdata. These tools only release perturbed cell values generated from automatic output perturbation algorithms in order to protect each underlying observation against various attacks, such as differencing attacks. An example of the perturbation algorithms has been proposed by Thompson et al. (2013). The algorithm focuses largely on reducing disclosure risks without addressing much on data utility. As a result, the algorithm has limitations, including a limited scope of applicable cells and uncontrolled utility loss. In this paper we introduce a new algorithm for generating perturbed cell values. As a comparison, The new algorithm allows more control over utility loss, while it could also achieve better utility-disclosure tradeoffs in many cases, and is conjectured to be applicable to a wider scope of cells. Abstract. Releasing business microdata is a challenging problem for many statistical agencies. Businesses with distinct continuous characteristics such as extremely high income could easily be identified while these businesses are normally included in surveys representing the population. In order to provide data users with useful statistics while maintaining confidentiality , some statistical agencies have developed online based tools to allow users to specify and request tables created from microdata. These tools only release perturbed cell values generated from automatic output perturbation algorithms in order to protect each underlying observation against various attacks, such as differencing attacks. An example of the perturbation algorithms has been proposed by Thompson et al. (2013). The algorithm focuses largely on reducing disclosure risks without addressing much on data utility. As a result, the algorithm has limitations, including a limited scope of applicable cells and uncontrolled utility loss. In this paper we introduce a new algorithm for generating perturbed cell values. As a comparison, The new algorithm allows more control over utility loss, while it could also achieve better utility-disclosure tradeoffs in many cases, and is conjectured to be applicable to a wider scope of cells.
Many statistical agencies face the challenge of maintaining the confidentiality of respondents while providing as much analytical value as possible from their data. Datasets relating to businesses present particular difficulties because they are likely to contain information about large enterprises that dominate industries and may be more easily identified. Agencies therefore tend to take a cautious approach to releasing business data (e.g., trusted access, remote access and synthetic data). The Australian Bureau of Statistics has developed a remote server, called TableBuilder, which has the capability to allow users to specify and request tables created from business microdata. The tables are confidentialised automatically by perturbing cell values, and the results are returned quickly to the users. The perturbation method is designed to protect against attacks, which are attempts to undo the confidentialisation, such as the well-known differencing attack. This paper considers the risk and utility trade-off when releasing three Australian Bureau of Statistics business collections via its TableBuilder product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.