A two-part experiment was conducted to determine the effects of a blend of specialized mannan rich and glucan rich fractions of yeast (Select-TC, Alltech Inc.) on the health status and performance of steers during the first two months of the feedlot period. Eighty crossbred steers were acquired from commercial sale barns in Mississippi and Georgia, and transported to Purdue University. All animals were fed a corn silage based receiving diet, and were checked and treated daily for respiratory disease as needed following established treatment protocols. In Exp. 1, 64 steers (246.5 ± 4.7 kg initial weight) were blocked by body weight (BW) and randomly allocated to 2 treatments to determine the impact of supplementation of a hydrolyzed mannan and glucan rich yeast fraction for 56 d on BW, average daily gain (ADG), daily dry matter intake (DMI), and gain:feed: hydrolyzed yeast fed at 13 g (as-fed)/steer daily (TC) or non-supplemented control (CON). Steers in Exp. 1 were housed in bedded pens with 2 animals/pen (n = 16 pens [32 steers]/treatment). In Exp. 2, 16 steers (247.1 ± 5.4 kg initial BW) were similarly allotted to two treatments (CON and TC), individually penned, and subjected to a lipopolysaccharide (LPS) endotoxin challenge on d 62 or 63 after the start of the study to determine the animal's response to an inflammatory agent. Serum samples and rectal temperatures were taken every half an hour from -2 to 8 h relative to LPS injection from steers in Exp. 2. Data were analyzed as a complete randomized block design using the MIXED procedure of SAS. Morbidity for both experiments did not differ (P ≥ 0.16). Weight, ADG, DMI and gain:feed, did not differ among treatments (P ≥ 0.32) in Exp. 1. After the LPS infusion in Exp. 2, rectal temperatures (P = 0.03) and serum non-esterified fatty acid (NEFA) concentration (P = 0.04) were decreased in TC compared to CON steers. Concentrations of blood urea nitrogen (P = 0.31), glucose (P = 0.70), insulin (P = 0.57) and cortisol (P = 0.77) did not differ by treatment after LPS administration. Serum interleukin-6 concentrations were decreased (P < 0.0001) and interferon-γ concentrations tended to be greater (P = 0.07) in TC compared to CON steers after LPS infusion. Serum cytokine and metabolite results indicate that Select TC improved health and metabolic status of LPS-challenged cattle, but this did not result in quantifiable improvements in performance in the conditions observed in this study.
One hundred twenty Angus × Simmental steers [322 ± 4.8 kg initial body weight (BW)] were blocked by BW and randomly allocated to 4 treatments arranged as a 2 × 2 factorial to evaluate the effects of supplemental arginine (none or 63 g/d of a 15.6% metabolizable arginine), supplemental lysine (none or 40 g/d of a 25% metabolizable lysine), and their interaction on performance and carcass composition of feedlot steers during a 170-d feeding period. The basal diet [dry matter (DM) basis] contained 52% dry-rolled corn, 22% dried distillers grains with solubles, 20% corn silage, and 6% vitamin-mineral supplement. Lysine balance was estimated to be −10.3 to −10.8 g for diets that did not contain supplemental lysine, and arginine supply was estimated to be +9.7 g for diets that did not contain supplemental arginine during period 1 (days 0 to 87). Lysine and arginine supplies met or exceeded requirements in period 2 (days 88 to 170). Rumen-protected arginine and lysine were top dressed daily until slaughter at a common BW (622 ± 5.5 kg). Data were analyzed using the MIXED procedure of SAS. Body weight, average daily gain, and DM intake were not affected (P ≥ 0.14) by arginine or lysine supplementation. However, lysine increased gain:feed (P = 0.05) during period 1. Lysine decreased serum urea nitrogen (P = 0.03) on day 87, increased (P = 0.01) longissimus muscle (LM) area, decreased (P ≤ 0.01) fat thickness and yield grade, and tended (P = 0.06) to increase moisture content of LM steaks. There tended to be an interaction for moisture content of steaks (P = 0.09), where arginine supplementation increased moisture content to a greater extent in steaks from cattle supplemented with lysine compared with steaks from cattle not fed supplemental lysine. Arginine tended to increase the proportion of Choice grade carcasses (P = 0.09) but did not change lipid content of steaks (P = 0.59). Arginine tended to decrease serum glutamate (P = 0.09) and lysine (P = 0.07) after 87 d of feeding. In conclusion, supplemental rumen-protected arginine and lysine did not improve performance, but lysine can increase carcass muscle and leanness, and although arginine did not increase lipid content of steaks, it may favorably shift carcasses to a greater quality grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.