The potential of hydrogen-exchange studies for providing detailed information on protein structure and structural dynamics has not yet been realized, largely because of the continuing inability to correlate measured exchange behavior with the parts of a protein that generate that behavior. J. Rosa and F. M. Richards (1979, J. Mol. Biol. 133, 399-416) pioneered a promising approach to this problem in which tritium label at exchangeable proton sites can be located by fragmenting the protein, separating the fragments, and measuring the label carried by each fragment. However, severe losses of tritium label during the fragment separation steps have so far rendered the results ambiguous. This paper describes methods that minimize losses of tritium label during the fragment separation steps and correct for losses that do occur so that the label can be unambiguously located and even quantified. Steps that promote adequate fragment isolation are also described.
Protein hydrogen exchange is generally believed to register some aspects of internal protein dynamics, but the kind of motion at work is not clear. Experiments are being done to identify the determinants of protein hydrogen exchange and to distinguish between local unfolding and accessibility-penetration mechanisms. Results with small molecules, polynucleotides, and proteins demonstrate that solvent accessibility is by no means sufficient for fast exchange. H-exchange slowing is quite generally connected with intramolecular H-bonding, and the exchange process depends pivotally on transient H-bond cleavage. At least in alpha-helical structures, the cooperative aspect of H-bond cleavage must be expressed in local unfolding reactions. Results obtained by use of a difference hydrogen exchange method appear to provide a direct measurement of transient, cooperative, local unfolding reactions in hemoglobin. The reality of these supposed coherent breathing units is being tested by using the difference H-exchange approach to tritium label the units one at a time and then attempting to locate the tritium by fragmenting the protein, separating the fragments, and testing them for label. Early results demonstrate the feasibility of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.