. Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol. 58(3): 785-790, 1985.-The purpose of this study was to record the blood pressure response to heavy weight-lifting exercise in five experienced body builders. Blood pressure was directly recorded by means of a capacitance transducer connected to a catheter in the brachial artery. Intrathoracic pressure with the Valsalva maneuver was recorded as mouth pressure by having the subject maintain an open glottis while expiring against a column of Hg during the lifts. Exercises included single-arm curls, overhead presses, and both double-and single-leg presses performed to failure at 80, 90, 95, and 100% of maximum. Systolic and diastolic blood pressures rose rapidly to extremely high values during the concentric contraction phase for each lift and declined with the eccentric contraction. The greatest peak pressures occurred during the double-leg press where the mean value for the group was 320/250 mmHg, with pressures in one subject exceeding 480/350 mmHg. Peak pressures with the single-arm curl exercise reached a mean group value of 255,' 190 mmHg when repetitions were continued to failure. Mouth pressures of 30-50 Torr during a single maximum lift, or as subjects approached failure with a submaximal weight, indicate that a portion of the observed increase in blood pressure was caused by a Valsalva maneuver. It was concluded that when healthy young subjects perform weight-lifting exercises the mechanical compression of blood vessels combines with a potent pressor response and a Valsalva response to produce extreme elevations in blood pressure. Pressures are extreme even when exercise is performed with a relatively small muscle mass.weight-lifting exercise; blood pressure; static contraction; small versus large muscle mass; Valsalva maneuver SEVERAL STUDIES HAVE NOW demonstratedthatregular resistance training or weight lifting is associated with ventricular wall hypertrophy (11, 12, 14, 20). Such findings are considered to be a normal adaptation to a systemic pressure overload induced by such exercise. METHODSFive healthy male volunteers (22-28 yr) served as subjects. All were experienced body builders and were fully informed of the purposes of the study and the associated risks in accordance with the institution's ethics committee.The left brachial artery of each subject was cannulated under local anesthesia with a 24-gauge Angiocath that was connected to a pressure transducer (Bell and Howell, Pasadena, CA) as illustrated in Fig. 1. The response of the transducer was verified to be linear within the range O-500 mmHg, and the system was statically calibrated against an Hg manometer by means of a calibration syringe. In addition, the system was dynamically calibrated by using square-wave pressure signals that were rapidly switched into the arterial line. These signals were then critically damped by adjusting the height of an air column in a section of low-compliance tubing inserted into the line (Fig. 1). Arterial blood pressure was cons...
The effects of gender on substrate utilization during prolonged submaximal exercise were studied in six males and six equally trained females. After 3 days on a controlled diet (so that the proportions of carbohydrate, protein, and fat were identical), subjects ran on a treadmill at a velocity requiring an O2 consumption of approximately 65% of maximal. They ran a total "distance" of 15.5 km with a range in performance time of 90-101 min. Plasma glycerol, glucose, free fatty acids, and selected hormones (catecholamines, growth hormone, insulin, and glucagon) were measured throughout and after the run by sampling from an indwelling venous catheter, and glycogen utilization was calculated from pre- and postexercise needle biopsies of vastus lateralis. Exercise protein catabolism was estimated from 24-h urinary urea nitrogen excretion over the test day and a nonexercise day. The males were found to have significantly higher respiratory exchange ratios (mean 0.94 vs. 0.87), greater muscle glycogen utilization (by 25%), and greater urea nitrogen excretion (by 30%) than the females. No gender differences were evident in the hormonal response to the exercise with the exception of a lower insulin concentration and a higher epinephrine concentration in the males. We conclude that, during moderate-intensity long-duration exercise, females demonstrate greater lipid utilization and less carbohydrate and protein metabolism than equally trained and nourished males.
The effects of the menstrual cycle on cardiorespiratory variables, blood lactate, and performance were studied in exercising females. Nine healthy subjects, 20--24 yr of age, were investigated in midfollicular and midluteal phases of the menstrual cycle at 33, 66, and 90% of maximum power output (light, heavy, and exhaustive exercise). Occurrence of ovulation was confirmed in all subjects by measurement of progesterone, which increased from 0.6 +/- 0.1 (mean +/- SE) in the follicular to 8.9 +/- 2.2 ng/ml in the luteal phase. There was no difference in heart rate (HR), ventilation, O2 uptake, or CO2 output between the two phases during light and heavy exercise, and there was no difference in HR at exhaustion. Cardiac output measured midway through light and heavy exercise periods was not affected by the phase of testing. Time for which exhaustive exercise could be maintained increased from 1.57 +/- 0.32 in the follicular to 2.97 +/- 0.63 min in the luteal phase (P less than 0.02). Blood lactate was higher in the follicular phase after heavy exercise (6.62 +/- 0.8 vs. 4.92 +/- 0.5 mmol/l) (P less than 0.05) and at exhaustion (8.12 +/- 0.9 vs. 6.76 +/- 0.6 mmol/L) (P less than 0.01). A further study showed no effect of cycle phase on lactate disappearance during exercise. We conclude that while aerobic performance and the cardiorespiratory adaptations to exercise are not influenced by the phase of the menstrual cycle, performance of high-intensity exercise is improved, and lactate production appears to be decreased in the luteal phase when estradiol and progesterone levels are elevated.
Elevated pulmonary arterial pressure in high-altitude residents may be a maladaptive response to chronic hypoxia. If so, well-adapted populations would be expected to have pulmonary arterial pressures that are similar to sea-level values. Five normal male 22-yr-old lifelong residents of > or = 3,600 m who were of Tibetan descent were studied in Lhasa (3,658 m) at rest and during near-maximal upright ergometer exercise. We found that resting mean pulmonary arterial pressure [15 +/- 1 (SE) mmHg] and pulmonary vascular resistance (1.8 +/- 0.2 Wood units) were within sea-level norms and were little changed while subjects breathed a hypoxic gas mixture [arterial O2 pressure (PaO2) = 36 +/- 2 Torr]. Near-maximal exercise [87 +/- 13% maximal O2 uptake (VO2max)] increased cardiac output more than threefold to values of 18.3 +/- 1.2 l/min but did not elevate pulmonary vascular resistance. Breathing 100% O2 during near-maximal exercise did not reduce pulmonary arterial pressure or vascular resistance. We concluded that this small sample of healthy Tibetans with lifelong residence > or = 3,658 m had resting pulmonary arterial pressures that were normal by sea-level standards and exhibited minimal hypoxic pulmonary vasoconstriction, both at rest and during exercise. These findings are consistent with remarkable cardiac performance and high-altitude adaptation.
This study examined some of the physiological and performance effects of three different tapers in highly trained athletes. After 8 wk of training, nine male middle-distance runners were randomly assigned to one of three different 7-day tapers: a high-intensity low-volume taper (HIT), a low-intensity moderate-volume taper (LIT), or a rest-only taper (ROT). After the first taper, subjects resumed training for 4 wk and performed a second taper and then resumed training for 4 wk and completed the remaining taper, so that each subject underwent all three tapers. Performance was measured before and after each taper by a treadmill run to fatigue at a velocity equivalent each subject's best 1,500-m time. Voluntary isometric strength and evoked contractile properties of the quadriceps were measured before and after each taper, as were muscle glycogen concentration and citrate synthase activity (from needle biopsies) and total blood and red cell volume by 125I and 51Cr tagging. Maximal O2 consumption was unaffected by all three tapers, but running time to fatigue increased significantly after HIT (+22%). It was unaffected by LIT (+6%) and ROT (-3%) procedure. Citrate synthase activity increased significantly with HIT and decreased significantly with ROT. Muscle glycogen concentration increased significantly after ROT and HIT, and strength increased after all three tapers. Total blood volume increased significantly after HIT and decreased after ROT.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.