[1] Nonvolcanic tremor is a recently discovered weak seismic signal associated with slow slip on a fault plane and has potential to answer many questions about how faults move. Its spatiotemporal distribution, however, is complex and varies over different time scales, and the causal physical mechanisms remain unclear. Here we use a beam backprojection method to show rapid, continuous, slip-parallel streaking of tremor over time scales of several minutes to an hour during the May 2008 episodic tremor and slip event in the Cascadia subduction zone. The streaks propagate across distances up to 65 km, primarily parallel to the slip direction of the subduction zone, both updip and downdip at velocities ranging from 30 to 200 km/h. We explore mainly two models that may explain such continuous tremor streaking. The first involves interaction of slowly migrating creep front with slip-parallel linear structures on the fault. The second is pressure-driven fluid flow through structurally controlled conduits on the fault. Both can be consistent with the observed propagation velocities and geometries, although the second one requires unlikely condition. In addition, we put this new observation in the context of the overall variability of tremor behavior observed over different time scales.
Episodic tremor and slip (ETS) events in Cascadia have recently been observed, illuminating the general area that radiates seismic energy in the form of non‐volcanic tremor (NVT). However, the picture of the ETS zone remains fuzzy because of difficulties in tremor detection and location. To observe the intimate details of tremor, we deployed a dense 84‐element small‐aperture seismic array on the Olympic Peninsula, Washington, above the tremor migration path. It recorded the main ETS event in May 2008, as well as a weaker tremor episode two months earlier. Using a beamforming technique, we are able to capture and track tremor activity with an unprecedented resolution from southern Puget Sound to the Strait of Juan de Fuca. The array technique reveals up to four times more duration of tremor compared to the conventional envelope cross‐correlation method. Our findings suggest that NVT is not uniformly distributed on the subduction interface, and unveils several distinct patches that release much of the tremor moment. The patches appear to be devoid of ordinary earthquakes, and may indicate the heterogeneity in fault strength that affects the modes of stress release within the ETS zone.
Nonvolcanic tremor is difficult to locate because it does not produce impulsive phases identifiable across a seismic network. An alternative approach to identifying specific phases is to measure the lag between the S and P waves. We cross-correlate vertical and horizontal seismograms to reveal signals common to both, but with the horizontal delayed with respect to the vertical. This lagged correlation represents the time interval between vertical compressional waves and horizontal shear waves. Measurements of this interval, combined with location techniques, resolve the depth of tremor sources within +/-2 kilometers. For recent Cascadia tremor, the sources locate near or on the subducting slab interface. Strong correlations and steady S-P time differences imply that tremor consists of radiation from repeating sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.