Material attributes (e.g., chemical composition, mineralogy, texture) are identified as the causative source of variations in the behaviour of mineral processing. That makes them suitable to act as key characteristics to characterise and classify material. Therefore, vast quantities of collected data describing material attributes could help to forecast the behaviour of mineral processing. This paper proposes a conceptual framework that creates a data-driven link between ore and the processing behaviour through the creation of material “fingerprints”. A fingerprint is a machine learning-based classification of measured material attributes compared to the range of attributes found within the mine’s mineral reserves. The outcome of the classification acts as a label for a machine learning model and contains relevant information, which may identify the root cause of measured differences in processing behaviour. Therefore, this class label can forecast the associated behaviour of mineral processing. Furthermore, insight is given into the confidence of available data originating from different analytical techniques. Taken together, this enhances the understanding of how differences in geology impact metallurgical plant performance. Targeted measurements at low-confidence unit processes and for specific attributes would upgrade the confidence in fingerprints and capabilities to predict plant performance.
The results of dig limit delineation in open pit mining are never truly optimized due to gaps in the underlying data, such as insufficient sampling. Aside from the data uncertainty, there is also an influence on the final dig limit by either humans or by the heuristic character of an optimization method like simulated annealing. Several dig limit optimizers have been published, which can replace the manual dig-limits designing process. However, these dig limit designs are generally not adapted to account for this heuristic character. In this paper we present a stochastic analysis tool that can be used with the results of heuristic dig-limit optimization to increase confidence in the obtained results. First, an enhanced simulated annealing algorithm for dig limit optimization is presented. Then, this algorithm is tested on ten different blasts at the Marigold mine, Nevada, USA, as a case study. Finally, the results are analysed with a destination-based ensemble probability map and an analysis conducted of the final solution data distribution. The generated dig-limit designs of the algorithm include high revenue areas that are excluded in comparable manual designs and show improved objective and revenue values. The analysis tool provides block destination probabilities and box plots with the distribution of opportunity value for the dig limit. Furthermore, with the analysis tool, it is possible to make well-informed design decisions in areas of uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.