The direct effects of L-and D-triiodothyronine (T3) on cardiac protein metabolism were investigated using fetal mouse hearts in organ culture. This model allowed the production of "thyrotoxicosis" in isolated hearts in vitro in the absence of the usual systemic metabolic and hemodynamic effects of thyroid hormones. Hearts were studied during the first 24 h of T3 exposure in culture, before changes in beating rate due to T3 occurred. Phenylalanine release was decreased by 26 +/- 2.3% (P less than 0.001) by the optimal concentrations of T3 (10(-7) to 10(-6) M). Changes were similar in the presence or absence of insulin. D-T3 was also anabolic, decreasing phenylalanine release by 24 +/- 2.5% (P less than 0.001) at concentrations of 10(-6) to 10(-5) M. The L-isomer increased protein synthesis by 23 +/- 6.8% (P less than 0.05) and decreased protein degradation, as measured by phenylalanine release in the presence of cycloheximide, by 5 +/- 1.6% (P less than 0.01). The D-isomer also increased protein synthesis but had no measurable effect on protein degradation. We conclude that thyroid hormones can exert direct anabolic effects on heart in the absence of systemic hemodynamic and metabolic changes. These effects are mediated primarily through an acceleration of the rate of protein synthesis; in the case of L-T3, a small inhibition of proteolysis may also occur.
A B S T R A C T Previous studies of the ability of the immature heart to respond to glucagon have yielded conflicting results. To test the possibility that the apparent discrepancies might be explained in part by species variability, isolated hearts of fetal mice and rats (13-22 days' gestational age) were studied under identical conditions in vitro. Changes in atrial rate and ventricular contractility were measured in spontaneously beating hearts exposed to glucagon, and activation of adenylate cyclase was assayed in cardiac homogenates.In mice of 16 days' gestational age or less, there was no change in heart rate in response to glucagon; at 17-18 days, minimal responsiveness was present; and after 19 days, 10 AM glucagon caused an increase in spontaneous atrial rate of 30+4% (SEM) (P < 0.001). Measurement of the extent and speed of volume displacement of the isotonically contracting hearts with a specially constructed capacitance transducer revealed that ventricular inotropic responsiveness also appeared after 17-19 days. Cardiac stores of glycogen were reduced in older hearts exposed to glucagon, but not in those aged less than 16 days. In contrast, glucagon failed to activate adenylate cyclase in homogenates of hearts of fetal mice at any age. Furthermore, glucagon failed to elicit an increase in the concentration of cyclic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.