A low-cost method is presented which enables digital image correlation (DIC) with conventional cameras (i.e. not high-speed) to be used for determination of vibration deflected shapes via the use of a stroboscopic lamp and some simple ancillary circuits. For each natural frequency of the structure under consideration, a sequence of images is captured asynchronously with the vibrations using the DIC system and the resulting displacement fields are correlated with the excitation signal driving the vibration using a least-squares approach. Three approaches for performing this correlation are outlined, one of which is developed into the algorithm used for processing the present results to obtain the amplitude and phase of the vibration at each point on the specimen, allowing the deflected shape to be reconstructed. This process is illustrated using the example of a vibrating aluminium plate. The resulting shapes and frequencies agree well with finite element modal analyses of the plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.