After reconsidering the physicochemical mechanisms involved in the so-called degeneration methods for the demonstration of axons and nerve terminals, the method of Eager was fundamentally modified in order to stabilize the staining process. This resulted in a simple and reliable method which stains degenerating terminals and lysosomes with a high degree of selectivity and sensitivity. Frozen sections 30 to 50 micrometers thick are prepared from material fixed with formaldehyde by cardiac perfusion. The staining procedure consists of 5 steps: 1) alkaline pretreatment (pH 13), 2) silver impregnation, 3) washing, 4) development at pH 5.0-5.5 monitored by an indicator, and 5) washing in acetic acid. Possible faults can be easily detected by their specific effects on the staining results. Primary submicroscopic silver precipitates are localized selectively in the osmiophilic parts of lysosomes and those degenerating presynaptic elements that are surrounded by glial processes. In degenerating axons, precipitates originating from mitochondria can usually be distinguished from terminal degeneration by their different size, shape, or characteristic arrangement. Nonspecific staining is restricted to glial fibrils, erythrocytes, and single cell nuclei. Dark field illumination can be applied routinely and television image analysis can be used for quantitative evaluation because of low background staining.
The extent of the spread of axonal degeneration was investigated in the visual cortex of the cat after making small lesions restricted to the grey matter. Two series of experiments were undertaken. In the first, normal adult cats were used, and in the second, the cortex of the postlateral gyrus was isolated from its extrinsic afferents by surgical undercutting 3 months before making the lesions. The results were similar in the two series in most respects. 1. Horizontal fibres extended in considerable numbers for some 500 micrometer from the lesion, mainly in layers I, III/IV and V, a few reaching 2/3 mm. These fibres were better seen in the intact than in the isolated cortex. Their spread was usually asymmetrical, being greater posteromedially than anterolaterally. 2. Oblique axons ran downwards from the middle layers into layers V and VI, or upwards into layers I and II. 3. Axons arising from layers II to VI descended vertically into the white matter. Degeneration patterns after lesions in areas 17 and 18 were compared.
A method has been elaborated by which degenerating axons can be selectively impregnated with silver. Based on reconsideration of the physicochemical mechanisms of the degeneration methods it takes advantage of physical developers over the chemical ones. The staining procedure is applied to frozen sections of brains fixed with formol. It consists of 6 steps: (1) pretreatment with alkaline hydroxylamine, (2) washing in acetic acid, (3) impregnation in silver nitrate in the presence of ferric ions, (4) washing in citric acid, (5) physical development, and (6) washing in acetic acid. By electron microscopy silver precipitates by this method are almost entirely restricted to the cytoplasm of dense, degenerating axons, sparing mitochondria and myelin sheaths. No special expertise is required to achieve reproducible results. Large numbers of sections treated simultaneously, and large sections, can be stained uniformly. Light microscopic criteria are described which help diagnose the source of possible failures. Low background staining allows dark field illumination and television image analysis to be applied. The method works at survival times of only 3 to 5 days after axotomy. Hence, degenerating axons and axon terminals can be stained in alternating sections from the same brain using this method and another being described separately, which, using different conditions, demonstrates degenerating axon terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.