We isolated the full-length chicken IL-10 (chIL-10) cDNA from an expressed sequence tag library derived from RNA from cecal tonsils of Eimeria tenella-infected chickens. It encodes a 178-aa polypeptide, with a predicted 162-aa mature peptide. Chicken IL-10 has 45 and 42% aa identity with human and murine IL-10, respectively. The structures of the chIL-10 gene and its promoter were determined by direct sequencing of a bacterial artificial chromosome containing chIL-10. The chIL-10 gene structure is similar to (five exons, four introns), but more compact than, that of its mammalian orthologues. The promoter is more similar to that of Fugu IL-10 than human IL-10. Chicken IL-10 mRNA expression was identified mainly in the bursa of Fabricius and cecal tonsils, with low levels of expression also seen in thymus, liver, and lung. Expression was also detected in PHA-activated thymocytes and LPS-stimulated monocyte-derived macrophages, with high expression in an LPS-stimulated macrophage cell line. Recombinant chIL-10 was produced and bioactivity demonstrated through IL-10-induced inhibition of IFN-γ synthesis by mitogen-activated lymphocytes. We measured the expression of mRNA for chIL-10 and other signature cytokines in gut and spleen of resistant (line C.B12) and susceptible (line 15I) chickens during the course of an E. maxima infection. Susceptible chickens showed higher levels of chIL-10 mRNA expression in the spleen, both constitutively and after infection, and in the small intestine after infection than did resistant chickens. These data indicate a potential role for chIL-10 in changing the Th bias during infection with an intracellular protozoan, thereby contributing to susceptibility of line 15I chickens.
Summary We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines - contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.
As most mechanisms of adaptive immunity evolved during the divergence of vertebrates, the immune systems of extant vertebrates represent different successful variations on the themes initiated in their earliest common ancestors. The genes involved in elaborating these mechanisms have been subject to exceptional selective pressures in an arms race with highly adaptable pathogens, resulting in highly divergent sequences of orthologous genes and the gain and loss of members of gene families as different species find different solutions to the challenge of infection. Consequently, it has been difficult to transfer to the chicken detailed knowledge of the molecular mechanisms of the mammalian immune system and, thus, to enhance the already significant contribution of chickens toward understanding the evolution of immunity. The availability of the chicken genome sequence provides the opportunity to resolve outstanding questions concerning which molecular components of the immune system are shared between mammals and birds and which represent their unique evolutionary solutions. We have integrated genome data with existing knowledge to make a new comparative census of members of cytokine and chemokine gene families, distinguishing the core set of molecules likely to be common to all higher vertebrates from those particular to these 300 million-year-old lineages. Some differences can be explained by the different architectures of the mammalian and avian immune systems. Chickens lack lymph nodes and also the genes for the lymphotoxins and lymphotoxin receptors. The lack of functional eosinophils correlates with the absence of the eotaxin genes and our previously reported observation that interleukin- 5 (IL-5) is a pseudogene. To summarize, in the chicken genome, we can identify the genes for 23 ILs, 8 type I interferons (IFNs), IFN-gamma, 1 colony-stimulating factor (GM-CSF), 2 of the 3 known transforming growth factors (TGFs), 24 chemokines (1 XCL, 14 CCL, 8 CXCL, and 1 CX3CL), and 10 tumor necrosis factor superfamily (TNFSF) members. Receptor genes present in the genome suggest the likely presence of 2 other ILs, 1 other CSF, and 2 other TNFSF members.
Summary Based upon the recognition of antiviral compounds and single stranded viral RNA the Toll‐like receptors TLR7 and TLR8 are suggested to play a significant role in initiating antiviral immune responses. Here we report the molecular characterization of the chicken TLR7/8 loci which revealed an intact TLR7 gene and fragments of a TLR8‐like gene with a 6‐kilobase insertion containing chicken repeat 1 (CR1) retroviral‐like insertion elements. The chicken TLR7 gene encodes a 1047‐amino‐acid protein with 62% identity to human TLR7 and a conserved pattern of predicted leucine‐rich repeats. Highest levels of chicken TLR7 mRNA were detected in immune‐related tissues and cells, especially the spleen, caecal, tonsil and splenic B cells. Alternative spliced forms of TLR7 mRNA were identified in chicken, mouse and human and expressed in similar tissues and cell types to the major form of chicken TLR7. The chicken TLR7+ HD11 cell line and fresh splenocytes produced elevated levels of interleukin‐1β (IL‐1β) mRNA after exposure to the agonists R848 and loxoribine. Interestingly, none of the TLR7 agonists stimulated increased type I interferon (IFN) mRNA whereas poly(I:C) (a TLR3 agonist) up‐regulated both chicken IFN‐α and chicken IFN‐β mRNA. In contrast, TLR7 agonists, particularly R848 and poly(U) stimulated up‐regulation of chicken IL‐1β, and chicken IL‐8 mRNAs more effectively than poly(I:C). Stimulation of chicken TLR7 with R848 was chloroquine sensitive, suggesting signalling within an endosomal compartment, as for mammalian TLR7. The deletion of TLR8 in galliforms, accompanied with the differential response after exposure to TLR7 agonists, offers insight into the evolution of vertebrate TLR function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.