The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in city of Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, solar heat gain coefficient) on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the solar heat gain coefficient parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included, respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.
This paper investigates and analyzes a typical multi-zone office building?s annual energy performance for the location and climate data of central Belgrade. The aim is to evaluate the HVAC system?s and HR unit?s performance in order to conduct the most preferable heating and cooling solution for the typical climate of Belgrade city. The energy performance of four HVAC system types (heat pump - air to air, gas-electricity, electrical and fan coil system) was analyzed, compared and evaluated on a virtual office building model in order to assess the total annual energy performance and to determine the efficiency of the HR unit?s application. Further, the parameters of an energy efficient building envelope, HVAC system, internal loads, building operation schedules and occupancy intervals were implemented into the multi-zone analysis model. The investigation was conducted in EnergyPlus simulation engine using system thermodynamic algorithms and surface/air heat balance modules. The comparison and evaluation of the obtained results was achieved through the conversion of the calculated total energy demand into primary energy. The goal is conduct the most preferable heating and cooling solution (Best Case Scenario) for the climate of Belgrade city and outline major criteria in qualitative enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.