Nanocrystalline structured variants of commercially available alloys have shown potential for boosting the mechanical properties of these materials, leading to a reduction in waste and thereby retaining feasible supply chains. One approach towards achieving these nanostructures resides in frictional treatments on manufactured parts, leading to differential refinement of the surface structure as compared to the bulk material. In this work the machining method is considered to be a testing platform for the formation and study of frictional nanostructured steel, assembly of which is stabilized by fast cooling of the produced chip. Analysis of the mechanical properties has shown extraordinary results at the surface, over 2000 MPa of strength on AISI1045 steel, more than three times the strength of the base material, demonstrating at the same time a reduction of 15% in the elastic modulus. The microscopic analysis suggests a reassembly of the elements in a new lattice of carbon supersaturated nano-ferrite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.